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Abstract 
A recent approach to deontic logic – the logic of permission, obligation and 
prohibition – places deontic logic into a dynamic framework. In dynamic logics 
we differentiate between actions and assertions. For every action term α, an 
execution operator ‘[α]…’ is introduced, which is read as ‘every execution of α 
leads to a state in which … holds’. Enriching our language by a violation con-
stant V, allows us to reduce deontic predicates in two obvious ways: (i) An ac-
tion is forbidden iff every execution leads to a violation, (ii) an action is forbid-
den iff at least one execution leads to a violation. Both reductions lead – besides 
being somewhat coarse grained – to implausible theorems. In our paper we will 
address the question: where and how one may find more sophisticated reduc-
tions.  

 
 
1  INTRODUCTION: STANDARD DEONTIC LOGIC AND 
ANDERSONIAN REDUCTIONS 
 
In the standard systems of deontic logic – the logic of obligations, permis-
sions and forbiddances, originating from [von Wright 1951] – the language 
of propositional logic is extended by (at least one of) the normative opera-
tors ‘O’, ‘P’ and ‘F’ for ‘it ought to be the case that’, ‘it is permitted that it 
is the case that’ and ‘it is forbidden that it is the case that’, respectively. At 
least one of these operators is primitive in those systems. Taken ‘O’ as pri-
mitive, the other operators are usually introduced via the definitions 
 

(DF) Fϕ ↔ O¬ϕ, where ϕ is an arbitrary formula 
 
and 
 

(DP) Pϕ ↔ ¬O¬ϕ, where ϕ is an arbitrary formula. 
 
A system of deontic logic is said to have the property of strong interdefin-
ability iff (DP) and (DF) hold in it. Furthermore we call a deontic logic re-
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ductive iff every formula containing a deontic operator is equivalent to a 
formula without deontic operators. In a reductive deontic logic normative 
operators can therefore be eliminated. 

The proof theory of the simplest deontic logic is the modal logic D 
and its semantics therefore a Kripke-semantics with serial frames. Addi-
tionally it contains (DP) and (DF). From now on we shall call this logic the 
standard system of deontic logic (short: SDL). Hence, we may call SDL 
non-reductive, and SDL has the property of strong interdefinability.  

In [Anderson 1958] Alan Ross Anderson presented a reduction of 
deontic logic to alethic modal logic. He enriched the modal base language 
by the propositional constant ‘S’, which he interpreted as occurrence of a 
sanction. His reduction was  
 

(AR) Oϕ ↔ (¬ϕ → S), 
 
meaning that it ought to be the case that ϕ iff it is necessary that ¬ϕ im-
plies a sanction. The other deontic operators were introduced via (DF) and 
(DP). Obviously, Anderson’s deontic logic is reductive and has the prop-
erty of strong interdefinability. 
 (AR) may be criticized for several reasons. E.g. the formula 
 

(PR) Pϕ ↔ ◊(ϕ ∧ ¬S) 
 
can be derived from (AR), (DP) and its modal base logic. In words: It is 
permitted that ϕ iff it is possible that ϕ but no sanction occurs. (PR) sug-
gests a very weak notion of permission, maybe a notion too weak. How-
ever, it can be shown that  
 

(PA) Op → Op 
 
and 
 

(PA*) (p → q) → (Op → Oq) 
 
are theorems in Anderson’s logic too. (PA) excludes obligations that are 
not necessary and (PA*) yields the (in)famous Good Samaritan Paradox. 
Additionally, Anderson’s deontic logic contains SDL, and with it all its 
paradoxes. This shows – as it has been argued – that the reduction (AR) 
was not successful. 
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 In 1950 a similar reduction has already been proposed by Stig Kan-
ger in an unpublished manuscript. Kanger discusses in [Kanger 1971] his 
reduction  
 

(KR) Oϕ ↔ (Q → ϕ), 
 
where ‘Q’ is a propositional constant stating what is morally prescribed. 
(KR) hence reads ‘ϕ ought to be the case iff it is necessary that the morally 
prescribed implies ϕ’. Defining ‘Q’ as ‘¬S’, Kanger’s reduction (KR) turns 
out to be equivalent to Anderson’s reduction (AR). 
  The implausible theorems depend on the specific reduction and on 
the modal base logic. Is it possible to avoid them in a different framework? 
In the next sections we will explore more recent approaches to such reduc-
tions. These reductions are formulated in a different formal language, 
hence, in a different base logic: in the language of a dynamic logic.  
 
 
2. DYNAMIC DEONTIC LOGICS: KNOWN REDUCTIONS 
 
2.1 Dynamic Logics: Execution Operators 
 
In the language of a dynamic logic we differentiate between action terms 
and assertions. The language of propositional logic is extended by the un-
defined execution operator ‘[..]…’ which applied to an action term α and a 
formula ϕ yields the formula 
 

‘[α]ϕ’ 
 
which reads: ‘every execution of α leads to a state in which ϕ holds’. 
 The dual operator ‘〈α〉ϕ’ is defined as ‘¬[α]¬ϕ’, which reads ‘there 
is an execution of α that leads to a state in which ϕ holds’. Instead of 
‘[α]ϕ’ it is sometimes said that α leads to ϕ, and ‘〈α〉ϕ’ is also read as ‘α 
may lead to ϕ’. 

With the operator ‘〈..〉…’ we can elegantly define that an action is 
possible in a certain state: An action is possible iff there is a way to exe-
cute that action such that after its execution a tautology holds. In our for-
mal language: 
 

(DPoss) Possible(α) ↔ 〈α〉T, 
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where ‘T’ represents an arbitrary tautology. In its simplest form, the proof 
theory of ‘[..]…’ is the modal logic K, extended by special axioms for 
complex actions. 
 
2.2 Dynamic Logics: Actions 
 
We start with a denumerable set of atomic action terms. A very natural 
way to interpret actions is to assign to each atomic action a set of ordered 
pairs of states (i.e. possible worlds). The first element of such a pair is a 
start state, the second element a result state.  

On the basis of atomic actions we may construct several complex ac-
tions, for example 
 

(Negation)   ∼α   … not-α 
(Choice)   α∪β   … α or β 
(Conjunction)  α&β   … α and β 
(Sequence)  α;β   … α followed by β 

 
One natural way to interpret these complex actions is as set theoretic com-
plement (w.r.t. to the set of all ordered pairs of possible worlds), union, 
intersection and relative product, respectively. Depending on what kind of 
complex actions are allowed in the language, we get different proof theo-
ries. Unfortunately, a proof theory for & interpreted as intersection gets 
already very complicated (because & interpreted as intersection is not 
modally definable, see [Balbiani 2003]). Moreover, the question of how to 
interpret action negation remains a field of research in its own right (see 
for example [Broersen 2004]).  
 
2.3 Dynamic Deontic Logics: Reductions 
 
Looking back to the beginning of dynamic logic, Krister Segerberg has al-
ready developed a reduction of deontic logic to a dynamic logic in [Seger-
berg 1980]. Segerberg defined 
 

(SR) Pα ↔ [α]OK, 
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where ‘OK’ is a propositional constant, expressing that a state is “deonti-
cally satisfactory”. (SR) therefore calls an action permitted iff every execu-
tion of that action leads to a state which is deontically satisfactory.  
 Nevertheless, the first systematic contribution to dynamic deontic 
logic is to be found in Meyer’s famous paper [Meyer 1988]. Meyer en-
riched the dynamic base language by the propositional constant V – stand-
ing for violation – which is said to be true in a state iff a violation occurs in 
that state. He then proposed the following reduction: 
 

(R1) Fα ↔ [α]V, 
 
which calls an action α forbidden iff every execution of α leads to a viola-
tion. Additionally, we find the strong interdefinabilities  
 

(DOD) Oα ↔ F∼α and 
(DPD) Pα ↔ ¬Fα 

 
in Meyer’s deontic logic PDeL. (R1), (DOD) and (DPD) imply that PDeL is 
reductive too. (R1) and (DPD) lead – together with some basic principles 
of dynamic logic – to 
 

(MP) Pα ↔ 〈α〉¬V, 
 
meaning that it is permitted to do α iff there is a way to execute α that 
leads to a state in which no violation occurs. (MP) and (R1) look very sim-
ilar to Anderson’s reduction (AR), and (PR). This justifies calling (R1) – as 
Meyer did himself – an Andersonian reduction. The crucial question now 
is: Does the shift from a “classical” modal base logic to a dynamic logic 
prevent all implausible theorems – usually called paradoxes – from being 
provable? Meyer had great hopes in his reduction. He claims that “reduc-
ing deontic logic to dynamic logic kills two birds with one stone. Most im-
portantly, in this way we get rid of most (if not all) of the nasty paradoxes 
that have plagued traditional deontic logic.” [Meyer 1993, p.11] Unfortu-
nately, it was shown by R. van der Meyden in [vd Meyden 1990] and [vd 
Meyden 1996], and by myself in [Anglberger 2008], that some pretty nasty 
paradoxes are provable in PDeL. Van der Meyden showed that the para-
doxical formula 
 

(vdM) 〈α〉Pβ → P(α;β) 
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is a theorem in Meyer’s logic. For its proof only (R1) and some basic prin-
ciples of dynamic logic are needed. (vdM) has the highly implausible in-
stantiation: 
 (vdMi) If there is an execution of shooting the president after which 
it is permitted to remain silent, then it is permitted to shoot the president 
followed by remaining silent. 
 In [Anglberger 2008] I was able to prove another implausible theo-
rem in PDeL, the formula 
 

(T3) Fα → [α]Fβ. 
 
(T3) says that after a forbidden action has been done, any arbitrary action 
is forbidden. (T3) may be regarded as the dynamic pendant of the Paradox 
of Derived Obligation (since Fβ ↔ O∼β). This last paradox also has con-
sequences for the treatment of contrary to duty imperatives, see [Anglber-
ger 2008, p.430]. Additionally, if we extend Meyer’s logic with the dy-
namic pendant of the axiom D  
 

(Dd) Oα → Pα 
 
from classical deontic logic (which may be desired), we will be able to de-
rive a theorem stating that no possible action is forbidden (see [Anglberger 
2008, p.432]). But van der Meyden’s paradox still seems to be the more 
interesting one. This is because in (T3)’s proof Meyer’s full action algebra 
(and of course the dynamic base logic) was needed. The preconditions of 
(vdM)’s proof are therefore logically weaker and show with much more 
distinctness that (R1) needs to be given up, if we want to keep the dynamic 
framework. 

In his paper [Broersen 2004] on action negation, J. Broersen pro-
posed a different reduction. His reduction was 
 

(R2) Pα ↔ [α]¬Vp, 
 
where Vp is a propositional constant representing a special kind of violation 
(“permission-violation”). Broersen gave up strong interdefinability, he 
rather suggested a separate reduction for each deontic predicate. But his 
logic is still reductive; every deontic predicate can be eliminated. Further-
more, if ‘OK’ is defined as ‘¬Vp’ Broersen’s 2004 reduction (R2) is equi-
valent to Segerberg’s 1980 reducion (SR). 
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It was observed by Broersen himself that (R2) presupposes a special 
reading of actions. (R2) implies 
 

(R2T) Pα → P(α&β), 
 
which at first sight looks highly implausible. But under the so-called open 
reading of actions (R2T) becomes valid. The open reading of actions 
means that, whenever we talk about an action, we talk about every way to 
perform this action. Since α&β is a way to perform α, P(α&β) is implied 
by Pα. This validates (R2T). However, there definitely is a reason, why 
(R2T) looks paradoxical. Though quite interesting and elegant, the open 
reading of actions is simply not the one used in our ethical and juridical 
discourse. That is why, from an intuitive point of view, nearly everyone 
would immediately reject (R2T). Should not a deontic logic somehow 
model our (or at least: one of our) usage(s) of deontic expressions? Since a 
deontic logic is designed to be applied in ethical and juridical discourse, it 
seems justified to look for more "sophisticated" reductions. 
 
 
3  ALTERNATIVE REDUCTIONS 
 
3.1 A Bit of History 
 
The paradoxes of classical deontic logics are usually regarded as a touch-
stone for any new system of deontic logic. As quoted above, Meyer hoped 
that his system would be able to solve all (or nearly all) of these paradoxes. 
However, when working out a solution for – as he calls it – “the deepest 
paradox in deontic logic” (i.e. the Good Samaritan Paradox) in [Meyer 
1987], he recognized that his simple reduction was not sophisticated 
enough. He had to introduce more than just one violation constant. There-
fore he extended the language of the dynamic base logic by n many viola-
tion constants V1, V2,…, Vn where the index i (1 ≤ i ≤ n) of Vi indicates a 
violation of the i-th degree. Furthermore, he proposed n new reductions of 
the form 
 

(R1n) Fi(α) ↔ [α]Vi, where i = 1, 2,…, n. 
 
With (R1n) he was able to express certain degrees of forbiddance: ‘F1(α)’ 
was interpreted as ‘α is forbidden to degree one’, ‘F3(β)’ as ‘β is forbidden 
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to degree three’ etc. In this example β is thus “more forbidden” than α. But 
this reduction is not able to solve the problems mentioned above: (R1n) is 
simply (R1) for every level i = 1, 2,…, n. It is therefore possible to prove 
the aforementioned paradoxical formulae on every level. But in our opin-
ion, it hints at a possible way for constructing new reductions. 
 
3.2 New Reductions 
 
3.2.1 Ordering violations 
 
Let Ldyn(n) be a language of dynamic logic extended by a finite number n of 
violation constants V1, V2,…, Vn. Vn is true in a state iff a violation of the n-
th degree occurs in this state. Interestingly, at the end of his paper [Meyer 
1987] Meyer discusses the possibility of ordering these violations: 
 

The extension of the number of propositional variables related to sanctions also 
raises the question whether it is meaningful to put an ordering (e.g. a partial or-
dering) on them. Vi ≤ Vj for instance, would then express that sanction j is more 
severe than sanction i. Perhaps even Vj ⊃ Vi [in our terminology: Vj → Vi] can 
be chosen as an ordering. In this case, [α]Vj ∧ Vi ≡ [α]Vj [in our terminology: 
[α]Vj ∧ Vi ↔[α]Vj], since Vj comprises Vi entirely. [Meyer 1987, p.89] 

 
Meyer did not work out this stimulating thought, though it opens up very 
interesting possibilities. In fact, we will use Meyer’s own suggestion – the 
ordering of violations – as our only axiom for violations: 
 

(AxV) Vi → Vi–1, for all i (1 < i ≤ n), where n is the number of viola-
tion constants in Ldyn(n). 

 
This axiom may be motivated along various lines. For example, consider 
the following a bit more concrete application: Vn expresses that one has to 
stay in prison for n days – a possible measure of a violation. If one has to 
stay in prison for n days, one also has to stay in prison for n–1 days. In this 
application (AxV) is obviously valid. In general: Whenever a state is “bad” 
to a certain degree, it also is “bad” to every degree below. 

To achieve model theoretic validity of (AxV) we just have to postu-
late the according condition in the definition of a Kripke-model 〈W, R, I〉. 
In addition to the usual requirements on W (the set of possible worlds), R 
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(interpretation of actions) and I (valuation) the following condition has to 
be met: 
 

(CAxV) I(Vi) ⊆ I(Vi–1), for all violation constants Vi (1 < i ≤ n) 
 
3.2.2 Evaluating the deontic status of actions 
 
Consider the following situation: An airplane is about to crash because of 
some technical failure. Its pilot cannot prevent the airplane from crashing. 
Suppose further, that only two actions are available to the pilot: The first 
option is to crash-land the plane and by that maybe saving some people, 
the second option is to refrain from crash-landing the plane and by that 
killing all passengers with certainty. Though both actions would lead to an 
undesirable state of affairs – to a violation –, we would intuitively only call 
the second one forbidden. The reason for this is quite simple: In judging 
actions we usually relate them to other available options; if we intend to 
blame a person for having done something, we ask beforehand, what she 
could have done instead. Relating to our “airplane example”: If the pilot 
tried to crash-land the plane, we could not blame her for having done 
something wrong, because it was the best action among its alternatives (ac-
tually, there was only one alternative to the crash-landing). 

Summing this up: When evaluating the deontic status of an action we 
usually relate this action to other available alternatives. A (realistic) deon-
tic logic should also somehow consider this idea. At this point one question 
naturally arises: Can this be expressed within the language Ldyn(n) of a dy-
namic (deontic) logic? 
 
3.2.3 Introducing new reductions 
 
In dynamic logic an action can easily be compared with one of its alterna-
tives: We just have to compare an action with its negation. Of course, what 
exactly is compared here depends on how action negation is modelled. If 
action negation is modelled as set theoretic complement – as mentioned 
above – it is not clear, whether it is useful in ethical and juridical discourse 
(for a more extensive critique see [Broersen 2004]). So this model of ac-
tion negation does probably not suit our purposes. But there is a more real-
istic account: Broersen’s relativized action negation from [Broersen 2004] 
models refraining from an action. Within Broersen’s account doing ∼α 
means refraining from doing α. And refraining from doing α is a choice 
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among (all) other available actions, i.e. (in a way) α’s alternatives. With 
Broersen’s relativized action negation we can express the comparison 
needed. This leads to the question: In what respect do we have to compare 
α with ∼α? In our formal language we can compare them with respect to 
their outcomes (i.e. result states). Consider the formula 
 

[α]V3 ∧ [β]¬V3. 
 
The ordering implies that this formula expresses that doing β never leads to 
a greater violation than V2 (otherwise the right conjunct would have to be 
false). This in turn means that every execution of α is worse – i.e. leads to 
a greater violation – than every execution of β. Furthermore, when compar-
ing two actions, the ordering of violations allows us to measure the upper 
bound of their outcomes w.r.t. violations. E.g. the formula 
 

∃k([α]Vk ∧ [β]¬Vk) 
 
expresses that there is a certain degree of violation such that every execu-
tion of α leads to that violation whereas every execution of β does not. The 
index k is the upper bound of these violations that may be led to by α (but 
not by β). The existential quantifier is justified by the fact that only finitely 
many violation constants are allowed in Ldyn(n). There is no need for quanti-
fication over propositional variables as developed in [Shilov 1997] – it is a 
mere technical convenience: Let’s suppose the number of violation con-
stants is n. The formula above may then be rewritten (without the existen-
tial quantifier) as 
 

([α]V1 ∧ [β]¬V1) ∨ ([α]V2 ∧ [β]¬V2) ∨ … ∨ ([α]Vn ∧ [β]¬Vn) 
 
i.e. a disjunction of n conjunctions. 
 Substituting ‘∼α’ for ‘β’ in the above formula, we get the formula  
 

∃k([α]Vk ∧ [∼α]¬Vk), 
 
which says that ∼α leads necessarily to a better state than α – every execu-
tion of α leads to a greater violation than every execution of ∼α. One 
might now suggest the following reduction: 
 

(NR1) Fα ↔ ∃k([α]Vk ∧ [∼α]¬Vk), 
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which calls an action α forbidden iff ∼α’s outcome is always better than 
α’s outcome. This seems to be too strong. A more useful concept could be 
defined by 
 

(NR1*) Fα ↔ ∃k([α]Vk ∧ 〈∼α〉¬Vk). 
 
(NR1*) defines an action α as forbidden iff ∼α may lead to a better state 
than every execution of α. Consider our “airplane example” once again: 
There is an execution of refraining from doing nothing – e.g. crash landing 
the plane – which may lead to a better state (some people may be saved) 
than every “execution” of doing nothing (all people are going to die with 
certainty). That is why we would call the “action” of doing nothing forbid-
den. A second relevant factor seems to be, that, if an action α is forbidden, 
∼α has to be possible (the meaning of an action being possible was defined 
above). This is a version of the Principle of Alternate Possibilities (= PAP) 
and – at least in the dynamic formalization with strong interdefinabilities – 
a version of the Ought Implies Can Principle. This leads to a second and 
better reduction: 
 

(NR1**) Fα ↔ Possible(∼α) ∧ ∃k([α]Vk ∧ 〈∼α〉¬Vk) 
 
However, there is still one relevant condition missing: If we call an action 
α forbidden, it may lead to a violation. If every execution of α leads solely 
to states where no violation whatsoever occurs, α would not be called for-
bidden. One natural way to express this is the formula  
 

〈α〉 (V1 ∨ V2 ∨ … ∨ Vn). 
 
Though it is a sound formalization of this thought, the formula still con-
tains redundancies. Since we may use our ordering axiom, we can easily 
verify that  
 

〈α〉V1 
 
is a shorter but equivalent formulation. This leads us to our final proposal: 
 

(NR1F) Fα ↔ 〈α〉V1 ∧ Possible(∼α) ∧ ∃k([α]Vk ∧ 〈∼α〉¬Vk) 
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In a nutshell, (NR1F) calls an action α forbidden iff the following condi-
tions are satisfied: 
 

(i) α may lead to a violation, 
(ii) it has to be possible to refrain from doing α, 
(iii) if one refrains from doing α, we may end up in a better state than 

what is reachable by doing α. 
 
This reduction is much more complex than (R1) and (R2), and obviously 
the mentioned paradoxes vanish. Whether (NR1F) leads to new paradoxes 
has to be further investigated. Anyway, (NR1F) seems to be a more realis-
tic concept of forbiddance. A fact that justifies our hope of (possible) im-
plausible theorems not exceeding a certain (reasonable) extent.  
 
3.3 Further Research 
 
The language Ldyn(n) can easily be extended. For example, we could add m 
reward constants R1,…,Rm to Ldyn(n). A similar idea was already suggested 
by Meyer in his paper [Meyer 1988, p.125], though Meyer had only one 
reward constant in mind. The method developed in our paper – measuring 
the upper bounds of outcomes – makes it possible to define several con-
cepts of praiseworthiness. This would also allow us to make a distinction 
between actions that ought to be done and actions that are praiseworthy. 
Praiseworthy actions are "better" than obliged actions; an action might be 
too good to be obliged. 
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