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In this paper I respond to one of the familiar objections to the project in 
Principia Mathematica of reducing mathematics to logic. In particular, I 
want to refute the notion that PM is inferior to a non-logical axiomatic the-
ory such as Zermelo-Fraenkel set theory as a foundation for mathematics 
because it relies an the obscure notion of “propositional function” in con-
trast with set theory which provides a simple account of functions as sets 
of ordered pairs, themselves reduced to certain other sets. Below I will pre-
sent the theory of “descriptive” functions presented in PM and suggest that 
it was Russell’s view that the account of descriptive functions provides a 
logicist account which is superior to both the Frege’s account of functions, 
and the notion of functions as sets of sets. There was a deliberate choice 
made in PM not to found the theory of functions in set theory, and not to 
identify functions with sets of ordered pairs. In tracing the history of this 
topic, I will show that current treatments of functions in logic are more 
sensitive to these issues than one might at first think. Below I will first re-
view the account of “descriptive functions” in PM, and then compare this 
with Frege’s analysis of functions, then show how functions are treated in 
contemporary logic. Next, I will describe Norbert Wiener’s reduction of 
relations to sets and then review the evidence that Russell proposed his 
own account deliberately as an improvement over Frege’s, and finally con-
clude with some discussion of what this reveals about propositional func-
tions. 

                                                 
1 An earlier version of this paper was presented at the 31st International Ludwig Witt-
genstein Symposium. Thanks to Allen Hazen, James Levine, Paul Oppenheimer and 
Ed Zalta for discussion of this topic and George Bealer for comments at the confer-
ence. A companion to this paper, “Russell and Frege on the Logic of Functions” was 
presented at the 4th International Symposium for Cognition, Logic and Communica-
tion: 200 Years of Analytic Philosophy, at the University of Latvia in Riga, August 29, 
2008, and will appear in the 4th issue of the Baltic International Yearbook for Cogni-
tion, Logic and Communication. 
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The notion of “descriptive function” in PM makes essential use of the the-
ory of definite descriptions and, indeed, that use seems to be the sole tech-
nical function of the theory of descriptions in the work. The theory of de-
scriptions in *12 is based on a pair of contextual definitions, which allow 
the elimination of expressions for definite descriptions from the contexts in 
which they occur. The primary definition is:  
 

∗14·01. [(7x)φx] . ψ(7x)(φx) . = : (∃b) : φx . ≡x . x = b : ψb   Df 
 
This can be paraphrased as saying that ‘the φ is ψ’ means the same as 
‘There is a b such that anything x is φ if and only if that x is identical with 
b, and that b is ψ’. Here ‘ψ’ is the context from which the description 
‘(7x)(φx)’ is to be eliminated. That this is the scope of the description is in-
dicated by the prefixed occurrence of the description in square brackets: 
‘[(7x)(φx)]’. This definition allows the replacement of formulas in which 
definite descriptions appear in subject position. A further contextual defini-
tion is provided for the occurrence of descriptions as, ‘E!(7x)(φx)’, which 
expresses the assertion that a description is proper, that is, that there is ex-
actly one φ.  

Just as the definitions of ∗14 allow for the elimination of definite de-
scriptions from different contexts, so the theory of classes in ∗20 is based 
on a series of contextual definitions. Occurrences of class expressions 
‘ ˆ z ψz’ read as ‘the class of z which are ψ’, can be eliminated from contexts 
‘f ’  via the primary definition: 
 

∗20·01.  f { ˆ z (ψz)} . = : (∃φ) : φ!x . ≡x . ψx : f{φ! ˆ z }   Df 
 
To say that the class ˆ z (ψz) is f is to say that there is some (predicative) 
function φ which is coextensive with ψ and that φ is f. There is no explicit 
mention of scope, but in all regards this definition closely copies that of 
definite descriptions. The definition of class expressions is completed by a 
series of other definitions, including those which use variables that range 
over classes, the “Greek letters” such as ‘α’, which are used both as bound 
(apparent) and free (real) variables for classes. Together, the definitions of 
∗20 provide a reduction of the theory of classes to the theory of proposi-
tional functions. One immediate consequence of this definition is that a so-
lution for Russell’s paradox is provided by the restrictions of the theory of 
types. The “class of all classes that are not members of themselves”, upon 
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analysis, requires a function to apply to another function of the same type, 
which is prohibited by the theory of types.2 While this “no-classes” theory 
of classes succeeds in resolving the paradoxes via the elimination of talk of 
classes in favor of talk about propositional functions, it is precisely at this 
point that we part ways with the now standard, alternative, project of 
founding mathematics on axiomatic set theory. 

The next section of Principia Mathematica, “∗20 General Theory of 
Relations” presents the extension of the “no-classes” theory to the corre-
sponding notion for binary relations, the theory of so-called “relations in 
extension”. By analogy with the way the no-classes theory of ∗20 which 
defines a class expression ‘ ˆ z (ψz)’ using a contextual definition, in ∗20 we 
are given contextual definitions for eliminating expressions of the form 
‘ ˆ x ˆ y  ψ(x,y)’, which represents the “relation in extension” which holds be-
tween x and y when ψ(x,y) obtains: 
 

∗21·01. f{ ˆ x ˆ y  ψ(x,y)} . = : (∃φ) : φ! (x,y) . ≡x,y . ψ(x,y): f {φ! ( ˆ u , ˆ v )} Df 
 
The relation of x bearing ψ to y has the property f just in case some predi-
cative function φ, which is coextensive with ψ has the property f. From ∗21 
onwards, “Capital Latin Letters”, i.e. ‘R’, ‘S’, ‘T’, etc., are reserved for 
these relations in extension. They are variables, replaced by such expres-
sions as ‘ ˆ x ˆ y  ψ!(x,y)’, as Whitehead and Russell say, “just as we used 
Greek letters for variable expressions of the form ˆ z φ!z.” ([PM] 201). These 
new symbols for relations in extension are written between variables, as in 
‘xRy’ or ‘uSv’. A propositional function would precede the variables, as in 
‘φ(x,y)’. (It is not clear how this notation for relations in extension would 
be extended to three or four place relations. Indeed in general below, as in 
discussion of the analysis of relations in terms of sets of ordered pairs, the 
discussion will always be restricted to binary relations.) It should be noted, 
as Quine has observed, that the intensional propositional functions repre-
sented by ‘φ’ and ‘ψ’, etc., drop out here from the development of Prin-
cipia Mathematica, and that from this point on we only encounter relations 
in extension, symbolized by ‘R’, ‘S’, ‘T’, etc.3 

Definite descriptions, though of course very important to the later 
development of the philosophy of language, do not appear in the later sec-
tions of PM where the work of reducing mathematics to logic is really car-
ried out. In fact after ∗30·01 descriptions disappear from the symbolism, 
                                                 
2 See my Linsky [2002]. 
3 See Quine ([1963], p.251). 
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having performed their most important function. We are now ready for the 
notion of “descriptive functions.” This takes the form of yet another defini-
tion, in this case of the expression ‘R‘y’, read as “the R of y”: 
 

∗30·01.   R‘y = (7x) (xRy)      Df 
 
The expression ‘R‘y’ is defined by the definite description ‘(7x)(xRy)’. If 
‘xRy’ means ‘x is father of y’ then ‘R‘y’ is ‘the x such that x is father of y’, 
or ‘the father of y’. As Whitehead and Russell point out, this definition is 
not a contextual definition that shows how expression ‘R‘y’ is to be elimi-
nated from a context, such as ‘f {R‘y}’, but rather is simply an explicit in-
struction about to replace the symbols ‘R‘’, wherever they occur.  

The notion of “descriptive function” provides an analysis of the 
ubiquitous “mathematical functions” of arithmetic and analysis that are re-
duced to logical notions in later numbers of Principia Mathematica. 
Whitehead and Russell say: 

 
The functions hitherto considered, with the exception of a few particular 
functions such as α ∩ β have been propositional, i.e. have had proposi-
tions for their values. But the ordinary functions of mathematics, such as 
x2, sin x, log x, are not propositional. Functions of this kind always mean 
“the term having such and such a relation to x.” For this reason they may 
be called descriptive functions, because they describe a certain term by 
means of its relation to their argument. ([PM], p.231) 

 
Descriptive functions provide Principia Mathematica’s analysis of 

mathematical functions. It is a logicist analysis of mathematical functions 
in terms of the logical notions of relation in extension and definite descrip-
tions. It has been said that Frege “mathematicized” logic in preparation for 
his analysis of arithmetic.4 That mathematization involved not only the in-
vention of symbolic logic, but also relied on the mathematical notion of 
function as a primitive notion in his logic. Concepts are functions from ob-
jects to truth values. Frege’s notion of the extension of a concept is its 
course of values, which is a notion that applies to all functions. The notion 
of course of values is centrally implicated in Russell’s paradox, and so is 
seen, like Whitehead and Russell’s theory, as one of the unsuccessful logi-
cist attempts to avoid postulating sets as primitive, mathematical, entities. 
The account of descriptive functions in ∗30 thus brings out clearly, some 
might think, the primary objections to Whitehead and Russell’s version of 
                                                 
4 By Burton Dreben for one, according to Peter Hylton, ([1993], n.28). 
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logicism. It relies on notions much better understood within the mathe-
matical theory of sets. A function, on this account, is simply as set of or-
dered pairs, ordered pairs themselves being sets of a certain sort, and a 
propositional function would be a function from arguments to propositions. 
As propositions are not needed for the extensional, first order, logic in 
which axiomatic set theory is formulated, ∗30 thus epitomizes the wrong 
path taken by Whitehead and Russell’s version of logicism.  

I would like to suggest that an examination of the development of the 
idea of function in logic from Frege and Russell on into the early part of 
the twentieth century will defend the notion of descriptive function as a 
successful way of reducing the mathematical notion of function to logical 
notions alone. 

While it is correct to say that Frege relies on the notion of mathe-
matical function as a primitive, that is not to say that he did not provide a 
famously original and ground breaking logical analysis of function expres-
sions and variables. Frege’s 1891 paper “Function and Concept” and most 
explicitly his 1904 paper “What is a Function?” talk about the mathemati-
cal notion of function, of which concepts are a special case. Frege explains 
the nature of variables as linguistic entities which may be assigned differ-
ent values and not as signs of “variable quantities” as many had confusedly 
described them to be. Frege’s further notion of concepts as “unsaturated 
entities” which are completed by objects and yield truth-values is well 
known. A function expression in general, and those for mathematical func-
tions among them, will also refer to unsaturated entities which yield ob-
jects as values. A function expression, then, such as ‘sin x’, ‘x2’, and ‘log x’ 
will have as its Bedeutung, or reference an unsaturated entity which, when 
applied to a number as argument, yields a number as value. The logical 
status of expressions for functions is that they are “incomplete” names for 
numbers. Just as Frege had problems in even naming concepts such as “the 
concept horse”, similarly there is a difficulty with naming functions. In fact 
the sine function ought to be expressed somehow as ‘sin( )’ with a blank or 
hole to indicate its unsaturated nature. The expression ‘sin x’, on the other 
hand, expresses a given number, the value of the function, for each as-
signment of a number to the variable ‘x’. It is clear from the discussion of 
the problem of naming concepts that Frege would have rejected Church’s 
lambda notation as a way of naming functions, for example, with ‘λx sin x’ 
as naming the sine function.  

In his Introduction to Mathematical Logic, Alonzo Church manages 
to turn Frege’s view into the current standard current view on the logical 
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syntax of function expressions and terms. Church avoids Frege's talk of 
function expressions having as a reference (Bedeutung) some unsaturated 
(and unnameable) entity, which, when saturated by an argument, gives a 
value. Instead we find: 

 
If we suppose the language fixed, every singulary form (function expres-
sion) has corresponding to it a function f (which we will call the associ-
ated function of the form) by the rule that the value of f for an argument x 
is the same as the value of the form for the value x of the free variable of 
the form … (Church [1956], p.19) 
 
This account avoids the expressions “denoted” or “designates”, in-

stead using the neutral “corresponding to” and “associated with.” Church 
wishes to explain the semantics of function expressions without running 
afoul of Frege’s “concept horse” problem by saying that functional expres-
sions name functions.5 But this is Frege’s account of the semantics. 
Church, and those after him for some time, took the difference in kind be-
tween functions and objects as a difference of logical type. It was only in 
the late 1930s that, following Quine, it became standard to view logic as 
first order logic, and relations and functions, via their reduction to sets of 
ordered pairs, as themselves just objects.6 

In contemporary logic texts one finds this tentative reformulation of 
Frege’s view fully transformed into the now standard account of the role of 
functions in logic. In the definition of the syntax of formal languages there 
is a notion of a term, and the semantics, based on the notion of the satisfac-
tion of a formula by a sequence, there is a clause for terms. The following, 
then, is typical. First we specify an set A of variables and logical symbols, 
and a set S of non-logical relation symbols, function symbols and con-
stants, and the notion of the set of strings of elements of that alphabet,  
(A ∪ S)*.7 

 
Definition. Terms are those strings in (A ∪ S)* obtained by finitely 
many applications of the following rules: 
(1) Every variable is a term. 
(2) Every constant is a term. 

                                                 
5 Frege introduces this problem in “Function and Concept”( [1891], p.196). 
6 See Mancuso ([2005], pp.335–339). 
7 Following Ebbinghaus et.al. ([1993], p.15), but Enderton [2001] and others are al-
most identical. This is a standard account. 
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(3) If t1, t2,…, tn are terms and f is an n-ary function symbol,  
      then f t1, t2,…, tn is a term. 

 
The semantics is based on the notion of a structure A for the language, 
which includes a set D as its domain, and individual cA in D for each con-
stant c and an n-ary function f A for each n-ary function symbol f. An as-
signment β in a structure A is a function which maps the variables into the 
domain D of the structure A. An interpretation I is a pair 〈A, β 〉 consisting 
of a structure A and an assignment β in A. The notion of the interpretation 
of a term, I(t) is defined as follows: 
 

(a) For a variable x, let I(x) = β(x) 
(b) For a constant c, let I(c) = cA 
(c) For a function symbol f, let I ( f )  = f A 
(d) For any n-ary function symbol f and terms t1, t2,…, tn,  
      I(f t1, t2,…, tn) = f A(I(t1), I (t1),…, I(tn)) 

 
The notion I |= ϕ of truth of a formula ϕ on an interpretation I is then de-
fined in the familiar way, and given that sentences are formulas without 
free variables, the notion A |= ϕ of the truth of ϕ in the structure A is de-
fined as truth of ϕ on all interpretations in A. 

The notion that functions and relations are sets of ordered pairs is of-
ten included in logic texts, but it is either in a separate first chapter on set 
theoretic “preliminaries” or in a later chapter on set theory as an example 
of a first order theory, formulable with only one non-logical constant, the 
relation symbol ‘∈’.8 As mentioned above, this change came late in the de-
velopment of logic, and was only finally settled on by Tarski and Quine 
around 1940. The resulting separation of this theory of functions and rela-
tions in set theory from the treatment of functions in logic is universal. One 
simply won’t find an account by which the value of ‘f(t)’ is the “second 
member of the ordered pair that has the interpretation of t as its first ele-
ment, from the set of ordered pairs that is the interpretation of f.”  

The notion that relations are sets of ordered pairs and of the ordered 
pair 〈x, y〉 in turn as a certain cleverly selected set containing sets contain-

                                                 
8 Enderton [2001] has a “Chapter 0: Useful Facts about Sets” and in it we find: “A 
function is a relation F with the property of being single-valued: for each x in dom F 
there is only one y such that 〈x, y〉 ∈ F. As usual, this unique y is said to be the value 
F(x) that F assumes at x.” (Enderton [2001], p.5). Suppes ([1957], pp.229ff.) includes 
this material in “Part II: Elementary intuitive Set Theory”. 
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ing x and y was introduced as an improvement to Principia Mathematica 
by Norbert Wiener [1914]. In the introductory material in ([1967] 224-
226), van Heijenoort credits the origin of the idea to Hausdorff and Kura-
towski, and Wiener himself says that “… what we have done is practically 
to revert to Schröder’s treatment of a relation as a class of ordered cou-
ples.” 

In PM, however the ordered pair of x and y, x↓y, is defined using the 
relation between elements of α and elements of β in extension, and α↑β 
which is already defined by: 
 

∗35·04. α↑β = ˆ x ˆ y  (x ∈ α . y ∈ β)     Df 
 
The ↓ relation is then defined by: 
 

∗55·01. x↓y = ι‘x ↑ι‘y    Df 
 
In other words, x↓y holds if x stands in the relation in extension to y that 
holds just in case x ∈ {x} and y ∈ {y}.9 This definition should be contrasted 
with that which Norbert Wiener [1914] proposed, by which the pair is de-
fined as: 
 

ι‘(ι‘ι‘x ∪ ι‘Λ) ∪ ι‘ι‘ι‘y 
 
In modern notation this is {{x}, Λ},{{y}}}. The definition from Kura-
towski [1921] is used more commonly now to define ordered pairs as  
{{x, y}, x}.10 

In his autobiography, Ex-Prodigy, Wiener describes this paper as 
arising out of his reading course on mathematical logic with Russell, and 
constituted his introduction to writing: 

                                                 
9 The ι‘ descriptive function, which maps a class α onto the class with α as its unique 
member, the “unit class” of α, began in Peano’s notation as the converse of an opera-
tion which mapped a unit class onto its unique member. That converse operation was 
indicated with the rotated, or “inverted” iota which later symbolized the definite de-
scription operator.  
10 It is interesting to note that our now current account of functions as sets of ordered 
pairs, no two of which have the same second member, is in fact a reversal of the order 
in Russell. Thus “the R of y” is defined as “the x such that xRy”, and thus the first 
member of the relation in extension in the value. One will find a page long discussion 
(p.24) in Quine [1963], in which he defends this older practice, which he attributes to 
Peano and Russell, against the later development. 
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Nevertheless, in connection with the course I did one little piece of work which 
I later published; and although it excited neither any particular approval on the 
part of Russell nor any great interest at the time, the paper which I wrote on the 
reduction of the theory of relations to the theory of classes has come to occupy 
a certain modest permanent position in mathematical logic. (Wiener [1953] 
p.191) 

 
While remarking that Russell did not react to the paper, Wiener describes 
this as a now standard part of mathematical logic. If what we have seen 
above is correct, of course Russell would find the analysis of relations in 
terms of classes of ordered pairs, and ordered pairs themselves as further 
constructions from classes, as getting things front to back. Russell’s analy-
sis of functions in terms of relations in extension, and those in terms of 
propositional functions, is in the opposite direction. Wiener is here claim-
ing credit for the alternative set theory approach to these aspects of the 
foundations of mathematics, which was eventually to prevail over White-
head and Russell’s logicist account. It is no wonder that Russell did not 
particularly “approve” of this as an important contribution to mathematical 
logic.  

Given this discussion of mathematical functions, it is possible to 
shed light on a major issue for the interpretation of Russell’s logic, the na-
ture of propositional functions. It is standard to approach the topic of pro-
positional functions by explaining how they differ from the mathematical 
functions with which we are now familiar, these arbitrary sets of ordered 
pairs, no two of which have the same second member. How do they differ 
from mathematical functions? 

Peter Hylton [1993] has tried to understand Bertrand Russell’s notion 
of propositional functions by first distinguishing them from the more fa-
miliar mathematical functions on which Frege’s work are thus based. Hyl-
ton’s interest is in contrasting Frege’s notion of “three-stage” semantics, 
with its names, Sinn, or sense, and Bedeutung, or reference, with Russell’s 
more direct “two-stage semantics” of names and referents. Hylton points 
out that propositional functions “yield propositions as values” which 
propositions contain their arguments as constituents. A mathematical func-
tion simply yields an object as value, in which there is no trace of the ar-
gument. The number 4 does not contain any trace of its being the value of 
the squaring function applied to 2. Instead, if anything, it is the sense of a 
function expression that embodies the mapping of argument onto value, 
and preserves the sense of the name of the argument in the sense of the ex-
pression for the value. Thus the sense of ‘22’, will record that is the value 
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of the function for a particular argument, even though the reference of the 
expression is simply the number 4.  

Hylton is right to point out this important aspect of propositional 
functions. Propositional functions, for Russell, are certainly not mathe-
matical functions from objects to propositions that need not include the ar-
gument as a constituent. In fact it was Ramsey, in his 1925 paper, “Mathe-
matical Logic” (Ramsey [1931]), who was the first to propose that proposi-
tional functions should be treated as such arbitrary mathematical functions 
from objects to propositions. Russell reviewed Ramsey’s papers twice 
(Russell [1931] and [1932]). In the review in Mind of 1931 he credits 
Ramsey with three main objections to Principia; “supposing that all classes 
and relations in extension are definable by finite propositional functions”, 
then the criticism for which Ramsey is best known, “a failure to distinguish 
two kinds among the contradictions, of which only one requires the theory 
of types, which can accordingly be much simplified” and the third, “the 
treatment of identity.” The second review describes Ramsey’s notion of 
extensional functions, but expresses some qualms: 

 
If a valid objection exists – as to which I feel uncertain – it must be derived 
from inquiry into the meaning of “correlation.” A correlation, interpreted in a 
purely extensional manner, means a collection of ordered pairs. Now such a 
collection exists if somebody collects it, or if something logical or empirical 
brings it about. But, if not, in what sense is there such a collection? (Russell 
[1931], p.117) 
 
Russell seems not to accept the idea of an arbitrary function in exten-

sion, which is not determined by some relation, at least for the special case 
of functions from objects to propositions. On the other hand, Russell clear-
ly understood the consequences of Cantor’s theorem about the cardinality 
of the set of subsets of a given set, for, as he says later in My Philosophical 
Development, it was Cantor’s theorem, applied to the “class” of every-
thing, that led him to the paradox in the first place.11 So, Russell would cer-
tainly have held that there are more classes than expressions for them, and 
so more functions than there are definable relations.12 But the further step 
is to accept that there are more classes than relations, that is, more sets than 

                                                 
11 See Russell, ([MPD], p.58). 
12 It is interesting to note that Hintikka and Sandu [1992] have charged that Frege also 
did not have the idea of an arbitrary function from objects to truth values, and so did 
not have the notion of arbitrary set needed to have a “standard” second order logic. 
Burgess [1995] suggests that the evidence is not so clear. 
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there are extensions of propositional functions or relations. When Russell 
speaks of “something logical” which “brings about” a collection, this need 
not be anything that can be grasped by the human mind, or expressed in a 
language, as propositional functions, which are part of logic, may go be-
yond anything definable in language. 

Beyond having values that record the identity of their arguments, 
propositional functions differ even further from the mathematical functions 
with arguments and values that Frege used throughout his logical theory. 
The most appropriate semantic theory for a system with propositional func-
tions may not interpret their semantic values as functions at all. This point 
can be put precisely, as it has by Paul Oppenheimer and Ed Zalta [ms], 
with their distinction between “relational type theory” and “functional type 
theory”. They show how in a theory with relations (and propositions) such 
as Zalta’s “Object Theory”, it is possible to interpret propositional func-
tions as relations, but not as functions. Their point can be illustrated by 
looking at Alonzo Church’s [1976] notation for the types of propositional 
functions. His notation does not require a type for propositions. Instead 
there is a type for individuals, ι and monadic propositional functions with 
individuals as arguments (ι), but there is no type for propositions. Some 
type theories, including that of Church himself for other purposes, repre-
sent types with symbols for arguments and values. Thus one might use ο as 
a type for propositions, and ι→ο as the type for functions from individuals 
to propositions. But Church’s notation uses the formulation of an empty 
pair of parentheses (  ) to indicate the type of propositions. This notation 
indicates the arguments that a propositional function takes, but does not re-
quire a semantics of functions from arguments to values as its interpreta-
tion. Instead one might simply give truth conditions for the result of “ap-
plying” a propositional function φ ˆ x  to an argument, rather than assigning it 
a proposition as value in the semantics. Indeed this fits well with Russell’s 
official abandonment of propositions in the Introduction to PM, following 
the problematic “multiple relation theory of judgment.” Officially, at least, 
there are no propositions in the type theory of PM, even though the logic is 
a system of propositional functions. Oppenheimer and Zalta show that in a 
particular formal type theory, that of Zalta’s “Object Theory” there are re-
lational expressions, the counterpart of propositional functions, which sim-
ply cannot be treated as denoting functions. Instead they will denote rela-
tions, where those are intensional entities, built up with operations on 
primitive relations using the analogues of operators from algebraic seman-
tics. So, while Ramsey explicitly proposed that propositional functions be 
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treated as mathematical functions from objects to propositions, and discus-
sions of propositional functions use the language of functional application, 
there is still no need to interpret propositional functions as a species of 
mathematical functions. 

George Bealer has been pointed out that the notion of mathematical 
function does at least provide an account of predication.13 If the meaning of 
a predicate F is a function, then the meaning of the result of the application 
of the predicate F to a subject term t can be seen as the result of the appli-
cation of the function that interprets F, that is || F ||, to the object that inter-
prets a, that is, || t ||. But a propositional function F ˆ x  is not supposed to be a 
mathematical function. How then do we explain what happens when F is 
predicated of t? We get a proposition Ft, of which || t || is a constituent. The 
propositional function F ˆ x  is not a constituent, so then what relates the 
function to the proposition which is its value?14 I prefer to think that Rus-
sell saw this as a primitive notion, best not explained in terms of the de-
rivative notion of mathematical function.  

Russell’s views about the relation between mathematical functions 
and propositional functions, or relations, are not primarily driven by a reac-
tion to Frege. They seem to be independently motivated. Consider the fol-
lowing from “On Meaning and Denotation” [1903]: 

 
If we take denoting to be fundamental, the natural way to assert a many-one re-
lation will not be xRy but y = φx. This, of course, is the usual mathematical way; 
and there is much to be said for it. All the ordinary functions, such as x2, sin x, 
log x, etc., seem to occur more naturally in this form than as 7  

( 
R |x. Again, in or-

dinary language, “y is the father of x” clearly states an identity, not a relation: it 
is “y = the father of x”. ([CP4], p.340)  
But if we take propositional functions to be fundamental – as I have always 
done, first consciously and then unconsciously – we must proceed through rela-
tions to get to ordinary functions. For then we start with ordinary functions such 
as “x is a man”; these are originally the only functions of one variable. To get at 
functions of another sort, we have to pass through xRy; but then, with 7, we get 
all the problems of denoting. And, as we have seen, a form of denoting more 
difficult than 7 is involved in the use of variables to start with. Thus denoting 
seems impossible to escape from. ([CP4], p.340) 

                                                 
13 At the conference from which this paper derives. 
14 At ([PM] 38) we find: “Thus for example, the proposition “Socrates is human” can 
be perfectly apprehended without regarding it as a value of the function “x is human.” 
But, famously, Russell held that we must be acquainted with the constituents of a 
proposition in order to understand, or apprehend it. This requires that functions are not 
constituents of propositions.  
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So, Russell does see propositional functions, or rather, relations, as 

more fundamental than mathematical functions. However, he sees the 
move to them as problematic, infected with the problems of denoting. Al-
though Russell may have found propositional functions to be more basic 
than mathematical functions, until he solved the problem of denoting in 
“On Denoting” [1905] he was not justified in thinking that he had ex-
plained the less obvious in terms of the more basic, instead the reduction of 
mathematical functions led directly to his big problem that concerned him 
in those days, the problem of denoting.  

With a proper theory of denoting, in particular, the theory of descrip-
tions of ∗12 of Principia Mathematica, in hand, Whitehead and Russell are 
then ready to complete the logicist analysis of mathematical functions as 
“descriptive functions” in ∗30. This, one might conclude, is probably the 
most important role for the theory of definite descriptions in the logicist 
project of PM. 
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