
1. Introduction

It is impossible for two different colors to occur at the same place simultaneously.

Therefore if a simple color-statement that ascribes a color to a spatio-temporal location

is true, then any simple color-statement that ascribes another color to the same spatio-

temporal location cannot be true. But Wittgenstein's Tractatus logico-philosophicus

(TLP) requires that elementary propositions must be logically independent of each other1

(I'll call this "Independence Requirement"). Thus the Independence Requirement seems

to conflict with the impossibility of simultaneous presence of different colors at the same

place. This color-exclusion problem has been thought to be one of the main reasons why

such a simple color-statement cannot be elementary proposition of TLP.

In this paper I shall show that such a simple color-statement can be analyzed into

a truth-function of elementary propositions that are logically independent of each other.

This means that we can construct a system of color-descriptions which satisfies the

Independence Requirement, and it will turn out that our system of color-descriptions

given below reflects "the logical structure of color" (TLP 6.3751) fairly well.

Some interpreters of TLP have tried to give an analysis of color-statements that can

solve the color-exclusion problem. But they don't seem to be successful. Canfield's

analysis (1976, 90-93), which attempts to make the logic of color-mixture overlap with

that of truth-functions (Cook also follows this line (1994, 37-39)), I think, cannot handle

the color-metamerism2 adequately. For it turns out that the Independence Requirement

must be given up in so far as the metamerism is taken into account. Wedin's analysis

(1992, 51-52), which follows faithfully a passage from Wittgenstein's Big Typescript

(TS213, 475-476), cannot overcome the same problem as Canfield's analysis

encounters. Hintikka & Hintikka offer, "as a thought-experiment", a color-ascription by "a

function c which maps points in visual space into a color space" (1986, 121-124). But

this proposal will encounter two difficulties : (a) it cannot satisfy the Independence

Requirement ; (b) it would give rise to a contradiction that is not truth-functional but is

"logical", to the contrary of TLP (6.375,5.525,4.46).
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Now the multiplicity of colors can be depicted by various figures such as a line

(according to the color-spectrum), a circle (e.g., Newton's color-circle), a plane figure

whose shape looks like a sail of a sailboat (the chromaticity-diagram of the CIE), an

octahedron (according to hue and lightness), and various solid bodies (according to hue,

lightness, and saturation), &c. The analysis of color-statements in the next section,

which relies on a notation which I call the "dividing notation", should be, and indeed is

independent of which figure we use to depict the color-multiplicity. In order to make this

clear, I shall present the notation in a general form (§2), and then apply it to a particular

color-space (§3).

2. Dividing notation in its general form

As is seen below, the dividing notation relies on the binary-notation. The idea of using

the binary-notation to describe colors has been suggested by Wittgenstein (Z, §368).

Carruthers used this idea to construct a model of color-descriptions that satisfies the

Independence Requirement (1990, 144-147)3. He exhibited the model whose color-

space is only 1-dimensional (yet he doesn't adopt it eventually, since his interpretation

of TLP isn't "phenomenalist"). I will generalize this idea into the "dividing notation" and

will show that this notation is applicable to any (finite) n-dimensional space.

Suppose the color-multiplicity is depicted by a (finite) n-dimensional space Q =

Q1×Q2×.... ×Qn adequately, a value of each Qm(1 • m • n) corresponds to an intensity

of a piece of various features of color (e.g., hue, lightness, &c.), and it ranges over within

the closed interval [0,1]. Thus the color-space Q can be defined as

{ <x1,...,xn> | x1∈Q1 & .... & xn∈Qn & 0 • x1 • 1 & .... & 0 • xn • 1 },

where every color corresponds to an ordered n-tuple <x1,...,xn> ∈Q. 

Now, for a natural number m (1 • m • n), consider the following function Dm from Q

into { 0, 1 } :

Dm(x1,...,xn) = 0    if 0 • xm • 0.5

1    otherwise.

This function assigns 0 to <x1,...,xn> ∈Q if 0 • xm • 0.5 and assigns 1 to it otherwise.

This operation that assigns 0 or 1 to every n-tuple <x1,...,xn> ∈Q according to the value

of its m-th member xm just corresponds to the operation that divides the n-dimensional

color-space in two with respect to the m-th dimension and assigns 0 to one section

generated by the division and 1 to the other. So this function can be called a "dividing

function". Thus the n-dimensional color-space Q is divided by each of these n dividing

functions.

Next, for a natural number m (1 • m • n), consider the following function Dn+m from Q

into { 0, 1 } :
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Dn+m(x1,...,xn) =    0    if  0 • xm • 0.25 or 0.5 < xm • 0.75

1    otherwise.

This function assigns 0 to <x1,...,xn> ∈Q if 0 • xm • 0.25 or 0.5 < xm • 0.75 and assigns

1 to it otherwise. So this function divides the color-space Q finer than the previous n

dividing functions. If we repeat this kind of division n+n times, then we assign to every

n-tuple <x1,...,xn> ∈Q a following binary-decimal up to the n+n-th place :

.D1....DnDn+1....Dn+n ( .D1(x1,...,xn)....Dn(x1,...,xn)Dn+1(x1,...,xn)....Dn+n(x1,...,xn) ).

We can divide the color-space Q as many times as we like. And the more times it is

divided, the finer the differences of colors are articulated. If it is divided k times, then a

binary-decimal up to the k-th place is assigned to each section generated by the k times

of division and different decimals are assigned to different sections. Therefore if we

specify a binary-decimal (up to the k-th place), we can specify a particular color that

corresponds to the section to which it is assigned.

Then elementary propositions take the form 

PTm
which says that

(#) A color <x1,...,xn> occurs at the place P at the time T , where that color

corresponds to one of the sections to which a binary-decimal having '1' at the 

m-th place is assigned.

And in order to specify a color that corresponds to a section to which a binary-

decimal having '0' at the m-th place is assigned, we will use the negation "¬PTm" of

"PTm". So if a color <x1,...,xn> is located in a section of Q to which the binary-decimal

.01001.... is assigned, i.e., it is the case that 

D1(x1,...,xn)=0, D2(x1,...,xn)=1, D3(x1,...,xn)=0, D4(x1,...,xn)=0, D5(x1,...,xn)=1, ....,

then the statement "a color <x1,...,xn> occurs at the place P at the time T " is analyzed

into the proposition "¬PT1 & PT2 & ¬PT3 & ¬PT4 & PT5 & ....".

The dividing notation here has been formulated in its general form. In the next

section, I will apply it to a particular color-space and construct a concrete system of

color-descriptions.

3. The color-exclusion problem revisited

First, assume that four colors Red, Yellow, Blue, and Green are elementary (cf., WWK,

42), and consider a color-square with its four vertexes corresponding to those four

elementary colors respectively. Then regard this color-square as a coordinate-space

whose origin is the vertex to which, for example, Yellow corresponds (Fig.1).

Yasushi Nomura 

132



Fig.1

Red <0, 1> <1, 1> Blue

Yellow <0, 0> <1, 0> Green

Thus we've got a 2-dimensional color-space Q whose x-axis is Yellow-Green and

whose y-axis is Yellow-Red (we call the former "Qx", the latter "Qy". Therefore 

Q = Qx×Qy). Here we have the color space :

{ <x, y> | x∈Qx & y∈Qy & 0 • x • 1 & 0 • y • 1 },

and now every color corresponds to an ordered pair <x, y> ∈Q (the distance from the

point <x, y> to, for instance, a vertex <0, 1> depicts Red content of the color <x, y> ). 

Now I will divide this color-space Q into sixteen sections by the following four dividing

functions (from Q into { 0, 1 }) :

D1(x, y) = 0    if 0 = x = 0.5

1    otherwise,

D2(x, y) = 0    if 0 = y = 0.5

1    otherwise,

D3(x, y) = 0    if  0 = x = 0.25 or 0.5 < x = 0.75

1    otherwise,

D4(x, y) = 0    if  0 = y = 0.25 or 0.5 < y = 0.75

1    otherwise.

Each of these functions assigns 0 or 1 to every <x, y> ∈Q according to the value of x or

y. By these functions a binary-decimal up to the 4-th place

.D1D2D3D4 ( .D1(x, y)D2(x, y)D3(x, y)D4(x, y) )

is assigned to every <x, y> ∈Q. In other words, every color <x, y> is located in a section

.D1D2D3D4 of the 2-dimensional color-space Q. Introducing these four dividing functions

amounts to fitting our color-space Q with the grid shown in the following figure.

Fig.2 the 3rd. division

Red <0, 1>                              <1, 1> Blue

.0101 .0111 .1101 .1111

the 2nd.   .0100 .0110 .1100 .1110 the 4th

division    .0001 .0011 .1001 .1011 division

.0000 .0010 .1000 .1010

Yellow <0, 0>                             <1, 0> Green

the 1st. division
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What an elementary proposition "PTm" says is just like (#) in §2 except n = 2, and a

negated elementary proposition is used in the same way as in §2. Then since the color

Red corresponds to the ordered pair <0, 1> in the above figure, and it is the case that 

D1(0, 1) = 0, D2(0, 1) = 1, D3(0, 1) = 0, and D4(0, 1) = 1

(i.e., Red is located in the section .0101 of Q), the statement "Red occurs at the place P

at the time T " is analyzed into the proposition "¬PT1 & PT2 &¬PT3 & PT4 ". As is easily

shown, elementary propositions are now independent of each other. Every (negated)

elementary proposition doesn't imply any (negated) elementary proposition except itself

(e.g., even if "PT1 " is true, that doesn't imply either "PT2 " or "¬PT2 " is true). 

And it is noteworthy that any statement that ascribes different colors to the same

spatio-temporal location can now be shown to be a genuine truth-functional contradiction

(cf., TLP6.3751). For example, the statement "Red and Blue occur at the place P at the

time T " is analyzed into the genuine truth-functional contradiction : (¬PT1 & PT2 &¬PT3
& PT4 ) & (PT1 & PT2 & PT3 & PT4 ).

Moreover, from a proposition that ascribes a certain color to a certain spatio-temporal

location we can deduce a negation of a proposition that ascribes another color to the

same spatio-temporal location. In other words, the latter is a logical consequence of the

former (under the classical two-valued propositional logic, of course). For example, the

statement "Red occurs at the place P at the time T" can be analyzed into the proposition

"¬PT1 & PT2 &¬PT3 &PT4 ". This clearly implies "¬(¬PT1 &¬PT2 &¬PT3 &¬PT4 )",
which is the negation of the proposition corresponds to the statement "Yellow occurs at

the place P at the time T ".   Thus we can see that our system of color-descriptions

reflects "the logical structure of color" (TLP6.3751) fairly well.

4. Conclusion

The dividing notation, as we have seen, enables us to construct a system of color-

descriptions that satisfies the Independence Requirement and reflects "the logical

structure of color" (TLP 6.3751) fairly well. The dividing notation will be applicable not

only to a system of color-descriptions but also to the systems of statements that describe

sensory qualities of any kind (if its multiplicity can be mapped into a (finite) n-dimensional

space4). Therefore we can conclude that the "completely analyzed" language of TLP

(3.201,3.25) can have empirical content even with the Independence Requirement.
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Endnotes

1 TLP5.152, &c.

2 This is one of well-known color-phenomena that is characterized by the fact that

there are more than one way in which one and the same color is resolved into its

ingredients.

3 According to him he owes his model to Roger White (Carruthers 1990, 190,

footnote10).

4 If only this condition is satisfied, the dividing notation can convert any system of

statements that describe a collection of mutually exclusive properties into a system

that satisfies the Independence Requirement.
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