

 218

Storing, processing and transmitting linked chunks of
structured text

Sindre Sørensen, Bergen, Norway

The current state of affairs

There is a vast amount of literature within computer sci-
ence on how to create, how to process, using various algo-
ritms, and how to transmit and data structures. This might
be what computer science is all about. Nevertheless; cre-
ating, processing and transmitting data, such as nonlinear
texts iusing XML is often not straightforward. Storing data
structures in a linear or hierarchical form in an XML-
document as well as validating and reconstructing data
structures in memory from their serialised form is no easy
task.

When data are produced in computer memory they
are typically generated by a specially tailored application.
The application may be specialised for assisting an author
in creating structured texts, linear, hierarchical, or in other
structures. Or to mention a completely different example,
the data might be generated from environmental sensors,
mapping values to a specific time etc. Or the data might be
text typed by a human, using a tool to systematically reor-
ganise an existing text, such as fragments from Wittgen-
stein's writings. Anyway, when we have an application that
produces data structures in memory, we don´t have to
worry about how the data are generated. Well written soft-
ware would be able to natively handle any data structure,
like sets, lists, trees, graphs or whatever is needed for the
specific task. But the problems that I am trying to deal with
in this paper arise when we want to store, share and
transmit the data in a serialised form. Today, one of the
standardised tools to store, transmit and retrieve text is
XML. But XML does not by itself define how the structure
of in-memory data structures are to be encoded out of their
in-memory context. Document standard publishers, like
The Text Encoding Initiative (TEI) and DocBook go one
step further. They specify the semantics of the document
and the structure of the final document, butstill confined by
the hierarchical structure of XML.

The structure of XML documents is a tree:

And because the inherent structure of XML is a tree, we
can also use the inherent structure of XML to represent
more general data structures, like lists and sets.

If all texts or all data were trees this would not be a
problem. But I argue that this is not the case. A text might
on one hand be considered an ordered list of a finite num-
ber of words. On the other extreme, the same text might
be considered an intricate graph, where some elements

repeat themselves; some elements overlap each other,
elements point at each other unidirectionally or circularly.
Consider a text talking about another text. It might be fruit-
ful to both consider these two texts as two separate texts
that together will form yet another text.

Encoding a text as a series of graphemes is easier:
Just store it as a series of bytes in a file; a text file. Ad-
vancing to encode the text as an ordered list of words, that
are contained in sentences, and thereafter in paragraphs
etc, all in a hierarchical way would be solvable with for
example XML.

But if the nature of the text or the data structure that
we are trying to encode is not hierarchical we can not ex-
ploit the inherent structure of XML to encode our data
structure. Still we can resort to a number of techniques to
encode our data structure.

In standards for ontologies (in the computer science
sense of ontologies) several such techniques are used.
This following RDF/XML file is an example of this. The
class "MiniVan" is a child of both "Van" and "Passen-
gerVehicle". This makes the file describe a graph instead
of a tree:

The XML/RDF fragment above is from Manola, Miller,
McBride 2004

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [<!ENTITY xsd

"http://www.w3.org/2001/XMLSchema#">]>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/2

2-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/

rdf-schema#"

xml:base="http://example.org/schemas/v

ehicles">

<rdfs:Class rdf:ID="MotorVehicle"/>

<rdfs:Class rdf:ID="PassengerVehicle">

 <rdfs:subClassOf

rdf:resource="#MotorVehicle"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Truck">

 <rdfs:subClassOf

rdf:resource="#MotorVehicle"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Van">

 <rdfs:subClassOf

rdf:resource="#MotorVehicle"/>

</rdfs:Class>

<rdfs:Class rdf:ID="MiniVan">

 <rdfs:subClassOf

rdf:resource="#Van"/>

 <rdfs:subClassOf

rdf:resource="#PassengerVehicle"/>

</rdfs:Class>

</rdf:RDF>

<?xml version="1.0" encoding="ISO-8859-1"?>
<text>
 <text>
 Hello
 <text>
 world one!
 </text>
 <text>
 world two!
 </text>
 </text>
</text>

Storing, processing and transmitting linked chunks of structured text — Sindre Sørensen

 219

The above illustration is a faximile from Manola, Miller,
McBride 2004

The above illustration is a facsimile from McQueen and
Huitfeldt, 2000

The XML fragment above is an XML encoded fragment
from a Wittgenstein text, repeated from McQueen and
Huitfeldt, 2000 but reindented here.

Trying to remodel the data structure into a plain text
form that is completely different than its in-memory form,
like in the above examples, might not be necessary:

A proposal for a new way and new tools

As mentioned, computer science provides much literature
on how to deal with various data structures. If we have the
right application, the problem of how to produce our data
might already be solved. We already have the data in
computer memory. Could we just keep the data in
memory, and not try to linearise it? I suggest that we could.
Let´s say that our data structure is stored in a block of

memory. This block of memory does not contain anything
else but our data structure.

The following is a schematical and simplified sum-
mary on how this structure could be stored in memory. For
simplicity I am pointing to sequential numbers where words
are atoms here, while in a real world implementation we
might want to point to memory addresses.

Atom number Atom

1 Der

2 Anblick

3 Das

4 Bild

5 der

6 einer

7 menschlichen

8 Gestalt

9 sowie

10 die

11 menschliche

12 Gestalt

13 selbst

14 sind

15 uns

16 wohlvertraute

17 Gegenstände

18 .

19 Von

20 einem

21 Wiedererkennen

22 aber

23 ist

24 hier

25 keine

26 rede

27 .

28 * p 29,34

29 * s 30-33, 11-17

30 * del 1-2

31 * add 3-4

32 * del 5

33 * add 6

34 * s 19-27

35 *signature 36

36 alvhwl1hwf8qdvosdihf

In this rendition, all words from the paper copy are
repeated initially, while the structure comes after. This
order is enforced here for simplicity and readability.

<p>

 <s>

 Der Anblick

 <add>Das Bild</add>

 der

 <add>einer</add>

 menschlichen Gestalt sowie die

 menschliche Gestalt selbst sind uns

 wohlvertraute Gegenstände.

 </s>

 <s>Von einem Wiedererkennen aber ist

 hier keine Rede.

 </s>

</p>

Storing, processing and transmitting linked chunks of structured text — Sindre Sørensen

 220

The serialised format would then be the sequence of
bytes in this memory block. In addition we could add some
extra features to the serialisation. These features would
assist in validation, consistency checking etc. I will now
briefly describe some conceivable features:

Digital signatures, and authorship control

Digitally signing chunks of data would provide several
benefits:

The authorship of the text can then be verified. In
fact, the text could have one or more authors, each of
whom could add their signature. In addition, the software
could provide a signature of its own, to link the version and
the exact build of the software to the text. In this way, one
could identify candidate texts for scrutiny when software
bugs etc. are discovered at a later point in time.

When another author wants to add to the work in the
table above, the data structure could be loaded into a vir-
tual machine. To preserve the original work, and also the
signature, the software should allow modifying the struc-
ture without requiring the original work to be modified.

One of the current ways to verify the origin of an
electronic document is verifying its physical origin. In case
the document was retrieved from the internet, the server's
IP number might be checked. If we trust that the server
belongs to an institution or author that we trust, we will also
trust that we have the correct document. When the docu-
ment is signed, we might not need to check the origin of
the document. Instead we can subject the text to harder
scrutiny; through signature validation.

A side effect of having a digital signature is that it
does not matter anymore from where we get the data, if we
have access to a signature that we trust. This principle is
used in peer-to-peer protocols like bittorrent (using hash-
es):

In order to keep track of which peers have what, Bit-
Torrent cuts files into pieces of fixed size, typically a
quarter megabyte. Each downloader reports to all of its
peers what pieces it has. To verify data integrity, the
SHA1 hashes of all the pieces are included in the
.torrent file, and peers don‘t report that they have a piece
until they‘ve checked the hash (Cohen, 2003)

Well-formedness checking

For simplicity, we here assume that all our data structures
are intact in memory, i.e. that all pointers point to the cor-
rect place in memory and that all data structures are con-
sistent in memory. Our software then gives the text a sig-
nature. Let's assume that we have a signature mechanism
that verifies that only one exact and unmodified version of
a software package may have stored the data structure.
Let´s also assume that we trust this software package to
provide well-formed data. I argue that in this case signa-
ture checking may replace well-formedness checking. We
may even trust the software that made the signature as
much as, or even more than our locally running software.
Using XML we would have had to parse the file, check for
well-formedness and validity. Here we could potentially just
load the file into memory, bit by bit, to reproduce the data
structure that was in machine A into machine B.

Validation

I have now described a way to avoid restructuring, lineari-
sation and parsing of a text. An important part of an XML
workflow is validation. An external document, such as a
DTD, a schema or some other mechanism is used to verify
that a text is valid according to a set of rules.

As mentioned, in the system proposed here, signing
might remove the need to validate data more than once.
But we might in many cases still want a method to restrict
the structure of content. For XML we have various solu-
tions, like DTDs, XML Schema and RELAX NG. These are
all well documented standards enabling us to define doc-
ument types, and thereby validate instances to check that
they are proper instances of the document type that is
referred to.

I suggest that using the system proposed here we
could store the rules needed for validating a document
type in a similar way to the way that the document instanc-
es are stored. In principle we could store all data structures
known to computer science in memory. One way to restrict
this and to define document types could be to store a
graph that contains all possible relations. I.e. the document
definition graph could contain information on global docu-
ment traits for our specific document type, such as whether
the document must satisfy the criterions for being a list, a
tree or a graph, or maybe a forest of graphs. In addition it
could contain information about whether elements are
allowed to have relations, and which relations each ele-
ment would be allowed to have.

In-place markup versus stand-off markup

There has been a long debate on whether in-place or
stand-off markup is the best mean to mark up text.

At the moment the in-place proponents seem to
have grabbed the longest straw. XML and its relatives
HTML and SGML are all basically in-place. When one
needs to talk about something outside of the new text,
three are several solutions:

In the system I am proposing here, we inherit a little
bit from both of these worlds. When creating a new text,
we might start from scratch, and the markup is actually a
part of the new work, not something external to it.

A brick wall principle

What happens when we want to publish new comments
and link them to an existing text? Presumably we can do
this in a stand-off kind of way, where we do not touch the
existing data. Instead we will point to places in the original
data, at fragments of the original text etc. When we want
changes to the original structure, we will form a new struc-
ture, but we will do it outside while pointing into the original
text. In this way the new text depends on the existence of
the original text, while the original text still exists as its own
entity.

Machine independency

When the Java language was conceived one of the main
ideas was that programs should be able to run on any
hardware. This was achieved by specifying the compiled
version of programs to be run in a virtual machine. The
compiled code would then run on any system that imple-
ments such a virtual machine. For the system that is pro-

Storing, processing and transmitting linked chunks of structured text — Sindre Sørensen

 221

posed here I suggest that a similar technique would be
used. But we don't have to worry about

An end user scenario, a brief walk through
of a possible web publishing scenario

A researcher on Wittgenstein's philosophy would like to
digitise a text written by Wittgenstein. After the text is digit-
ised, the researcher would like to publish it, and make it
available to other researchers for them to correct any er-
rors, to discuss, make their own interpretations and com-
ment on textual and philosophical issues, and to link plac-
es in the text to other texts. Researchers should also be
able to make their own versions of the digitised text, where
a common version can not be agreed upon.

The text is digitised in a specialised text editor,
which allows for marking deletions, additions, corrections
and margin notes. User friendly tools to do these kinds of
digitisation should be available without having to resort to
editing the machine readable encoding itself. The text is
then published on a web site, where anyone comment ln
both the content and the structure of the text by adding
extensions that point into existing work.

Conclusion

Stand-off markup and most of the ideas presented here
are of course not a new idea. But hopefully the combina-
tion of tools presented here would be worth a test imple-
mentation.

Literature

Cohen, Bram, 2003 Incentives Build Robustness in BitTorrent,
(http://www.bittorrent.org/bittorrentecon.pdf).

Manola, Miller, McBride, 2004 RDF Primer, W3C Recommenda-
tion, (http://www.w3.org/TR/REC-rdf-syntax/)

McQueen, Huitfeldt 2000 GODDAG: A Data Structure for Overlap-
ping Hierarchies.

Email: sindre.sorensen@uib.no

