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The success of ontological engineering using logical 
methods in the construction of pragmatically oriented do-
main ontologies revived interest to the old problem of the 
relations of logic and ontology. On the one hand, ontology 
extends its scopes and takes back its intellectual respect-
ability. On the other hand, logical pluralism makes logic to 
take care of its own basis and bounds. One of the attempts 
to give an exact definition of the concept of logic is a defi-
nition of abstract logic in generalized (abstract) model the-
ory. The concept of abstract logic is a generalization of the 
concept of truth as relation between structures and sen-
tences. An abstract logic consists of (1) a collection of 
structures closed under isomorphism, (2) a collection of 
formal expressions, and (3) a relation of satisfaction be-
tween the two. This definition does not include any condi-
tions concerning rules of inference. Hence in seems more 
appropriate to use the term ‘model-theoretic language’ 
instead of the term ‘abstract logic’. Even though the gen-
eralized model theorists use the term ‘abstract logic’ they 
do it frequently only by pragmatic reasons of simplicity and 
brevity. My purpose is to interpret abstract logics as formal 
ontologies, i.e. as genuine logics at least in phenomenol-
ogical sense.  

The interpretation of logic as formal ontology, an a 
priori science of objects in general, goes back to Edmund 
Husserl. Although the truths of logic apply to all regions of 
reality, Husserl believed it to be possible to give its tran-
scendental justification only if we postulate a special re-
gion of abstract categorical objects. If we want to save 
logic from the specific relativism of Kant’s interpretation of 
logical structures in terms of universal human abilities, we 
should, Husserl believed, consider them as structures of 
some objective area of abstract higher-level objects. What 
is the nature of these objects? The answer to this question 
is crucial for all the phenomenological project of justifica-
tion of logic.  

In my view, the model-theoretic analogues of cate-
gorical objects of Husserl’s formal region are classes 
(types) of isomorphism considered as abstract individuals 
of higher order. Any two isomorphic structures represent 
the same abstract system. A system is considered to be 
abstract, if we do not know anything of its objects except 
the relations existing between them in the system. Formal 
ontologies viewed as abstract logics are formal theories of 
relations quite similar to indivisible species (automon eide) 
of Aristotle’s ontology. They do not distinguish between 
specific individuals in the domain, but are not ‘empty’ in 
Kant’s sense, since they deal with individuals of higher 
order, i.e. classes of isomorphic structures. 

At the same time classes of structures closed under 
isomorphism may be viewed as generalized quantifiers. 
Generalized quantifiers express Husserl’s mental proper-
ties and relations which, unlike physical, do not influence 
on other properties and relations, but exist by virtue of 
other properties and relations. For example, Mostowski’s 
generalized quantifiers interpreted by classes of subsets of 
the universe attribute cardinality properties to the exten-
sions of first-level unary predicates. More precisely, a Mo-
stowski’s generalized quantifier is a function Q associating 
with every structure A a family Q (A) of subsets of the uni-
verse of A closed under permutations of the universe of A. 

Thus Mostowski’s quantifiers perfectly satisfy the permuta-
tion invariance criterion by Alfred Tarski.  

In his famous lecture “What are Logical Notions?” 
delivered in London in 1966 and published posthumously 
in 1986 Tarski proposed to call a notion logical if and only 
if “it is invariant under all possible one-one transformations 
of the world onto itself” (Tarski 1986, 149). Tarski’s infor-
mal definition of logical notions was an extension to the 
domain of logic of Klein’s Erlanger Program for the 
classification of various geometries according to invariants 
under suitable groups of transformations. Tarski character-
ized logic as a science of all notions invariant under one-
one transformations (permutations) of the universe. He 
gave several examples of logical notions. Among individu-
als there are no such examples, among classes the logical 
notions are the universal class and the empty class. It is 
remarkable that the only properties of classes of individu-
als which we can call ‘logical’ are “properties concerning 
the number of elements in these classes” (ibid, 151). What 
does cardinality have to do with logicality? Tarski proposed 
the following general philosophical interpretation of his 
invariance criterion, “our logic is logic of cardinality” (ibid.). 
In fact Mostowski’s quantifiers nicely satisfy this criterion. 
But Mostowski’s definition is not sufficiently general even 
to cover Aristotle’s quantifiers. There is, however, no con-
ceptual necessity to consider quantifiers as second-order 
properties. The obvious challenge here is to generalize 
this understanding on second-order relations. This gener-
alization of quantifiers was proposed by Per Lindström 
(1966). His quantifiers interpreted as second-order rela-
tions between first-order relations on the universe are 
polyadic. Binary examples of Lindström’s quantifiers are 
syllogistics quantifiers, e.g. «all … are…» = {<X,Y>: 
X,Y⊆U and X⊆Y}, Resher’s quantifiers QR = {<X, Y>: X, 
Y⊆U and card(X) ‹ card (Y)}, Hartig’s quantifiers QH = 
{<X,Y>: X,Y⊆U and card (X)= card (Y)}.  

Polyadic quantifiers go back to scholastic ‘multiple 
quantifiers’. However in standard logical notation they are 
not to be regarded as having an independent value, but 
interpreted as iterated unary quantifiers. On the other 
hand, any iterated quantifier prefix may be viewed as a 
polyadic quantifier. Polyadic interpretation is especially 
important in the case of heterogeneous quantifier prefixes. 
The point is that heterogeneous quantifier prefixes, ex-
pressing properties of classes of pairs of individuals, i.e. 
binary relations, distinguish equicardinal relations. Let us 
consider a simple model with the universe U= {a,b,c} 
(Микеладзе 1979, 296). Let set two binary relations on U, 
F1= {(a,a), (a,b), (a,c)} and F2= {(a,a), (b,b), (c,c)}. These 
relations have an identical number of elements. However 
∃x∀yF1(x,y) is not equivalent to ∃x∀yF2(x,y), and 
∀х∃уF1(x,y) is not equivalent to ∀х∃уF2 (x,y). In other 
words, binary quantifiers ∃x∀y and ∀х∃у distinguish equi-
cardinal relations F1 and F2. Thus Tarski’s thesis of ‘our 
logic’ as ‘logic of cardinality’ may be fair for the theory of 
monadic quantification (logic of properties of classes of 
individuals), but not for the theory of binary quantification 
(logic of properties of classes of pairs of individuals). 
Polyadic quantifiers take into account not only cardinal-
ities, but more refined formal features of the universe. Not 
only cardinalities, but also patterns of ordering of the uni-
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verse have to be taken into account by logical conceptuali-
zation. Logic with polyadic quantifiers is not ontology of 
cardinality but formal ontology of structures, types of order-
ing of the universe. 

In general, the permutation invariance criterion as-
similates logic to set theory. It is not unexpected in the 
context of the model-theoretical reconstruction of Husserl’s 
idea of formal ontology as “an a priori discipline that inves-
tigates all truths belonging to the essence of objectivity in 
general in formal universality” (Husserl 2008, 54). Husserl 
emphasizes the ‘inseparable unity’ of logic and mathemat-
ics. “People are”, in his view, “in the habit (a habit thou-
sands of years old) of keeping the two bodies of knowl-
edge in drawers far apart from one another. For thousands 
of years, mathematics has been considered a unique, 
special science, self-contained and independent like natu-
ral science and psychology, but logic, on the other hand, 
an art of thinking related to all special sciences in equal 
measure, or even as a science of forms of thinking not 
related any differently to mathematics than to other special 
sciences and not having any more to do with it than they” 
(ibid). Thus the unity of logic and mathematics had not 
been realized because of a normative interpretation of 
logic as a technical adjunct of psychology and metaphys-
ics. For Husserl, pure logic as Mathesis Universalis em-
braces logic and mathematics: “the whole of pure logic is 
to be understood as a formal ontology. The lowest level, 
apophantic logic, investigates what can be stated in possi-
ble form a priori on the first level about objects in general. 
The higher ontologies are concerned with purely formally 
determined higher-level object formations like set, cardinal 
number, quantity, ordinal number, ordered magnitude, 
etc.” (ibid, 76). On the other hand, according to Tarski’s 
definition, as Gila Sher remarks, “any mathematical prop-
erty can be seen as logical when construed as higher-
order. Thus, as a science of individuals, mathematics is 
different from logic, but as a science of higher-order struc-
tures, mathematics is logic” (Sher 1991, 63). As it was 
shown by Vann McGee an operation is logical according to 
Tarski’s permutation invariance criterion if and only if it is 
definable in the infinitary language L∞, ∞ (McGee 1996). 
L∞, ∞ is the language which allows conjunctions and dis-
junctions of any cardinality together with universal and 
existential quantification over sequences of variables of 
any cardinality.  

This assimilation of logic to mathematics contradicts 
W. V. O. Quine’s thesis of ontological neutrality of logic. 
For Quine, logic cannot assume any special entities as 
existing ones. Thus if logic is supposed to be independent 
of ontology, not only set theory but also second-order logic 
as “set theory in sheep’s clothing” go beyond the bounds 
of logic. In my view, the reason of this collision of two clas-
sical tests for logicality is the possibility of various interpre-
tations of the formality of logic. Logic distinguishes formal, 
metaphysically unchanging features of reality. But what 
does it mean precisely? If we interpret formality of a theory 
as its invariance under permutations of the universe it 
means that the theory does not distinguish individual ob-
jects and characterizes only those properties of model 
which do not depend on its nonstructural transformations. 
This formality of a theory does not imply its ontological 
neutrality. Expressive power of a formal (in the permutation 
invariance sense) logic may be sufficient for the distinction 
of abstract mathematical objects.  

Thus metaphysical considerations become a factor 
in choosing logical framework for formalizing theories. It 
seems worth trying to examine how more sophisticated 
models of reality can affect the choice of logical constants. 
For example, the permutation invariance criterion may be 
viewed as “only one extreme in a spectrum of invariance, 
involving various kinds of automorphisms on the individual 
domain” (van Benthem 1989, 320). The invariance criterion 
generalized this way is wide enough to include logics of 
abstract objects, for example, ‘logic of colour’. As Ludwig 
Wittgenstein assumes in his Tractatus, “the simultaneous 
presence of two colours at the same place in the visual 
field is impossible, in fact logically impossible, since it is 
ruled out by the logical structure of colour” (Wittgenstein 
2004, 6.3751). For Wittgenstein, as Jaakko Hintikka 
pointed out, “the conceptual incompatibility of color terms 
can be turned into a logical truth simply by conceptualizing 
the concept of color as a function mapping points in a vis-
ual space into color space” (Hintikka 2009, 52). Thus 
“nonlogical analytical truths sometimes turn out to be logi-
cal ones when their structure is analyzed properly” (ibid.). 
If we accept as a test for logicality the invariance not only 
for isomorphism but also for automorphism, namely, for all 
permutations of individuals which respect an additional 
structure of chromaticity, ‘logic of colour’ becomes possi-
ble. In the context of Klein’s Erlanger Program this logic 
may be considered as a member of a family of logics 
which are in their turn ‘geometries’ whose notions are in-
variant for permutations respecting some additional struc-
tures. Thus abstract logics become logics of abstract ob-
jects quite similar to domain ontologies of ontological engi-
neering.  

However these liberal principles of the demarcation 
of the bounds of logic may seem too exotic. But as John 
Barwise remarks, the ideology of abstract logics does not 
contradict even the person-in-the-street notion of logic. “On 
the common sense view on logic”, he believes, “all the 
concepts we use to cope with and organize our world have 
their own logic” (Barwise 1985, 4). The principles of the 
demarcation of the bounds of logic may have proof-
theoretical or model-theoretical character. The first ap-
proach is the traditional one that characterizes logic as a 
theory of valid inferences. The second is the one that un-
derstands logic as a theory of specific classes of struc-
tures. Abstract logics or logics with generalized quantifiers 
assume liberalization of metalogical requirements to logical 
systems and lead to their interpretation as formal ontolo-
gies, i.e. theories of formal structures of the universe. Even 
though the abstract logics are model-theoretic languages 
they belong to the tradition of Mathesis Universalis pre-
supposing the understanding of logic as calculus ratiocina-
tor, but not as lingua characteristica.*  

                                                      
* The work on this paper has been supported by Moscow Higher School of 
Economics, project no. 08-01-0016 (“Semantics of deviant quantification: 
game-theoretical and model-theoretical approaches”). 
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