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Against Pointillisme about Geometry

Jeremy Butterfield, Oxford

1. Introduction

Th is paper forms part of a wider campaign: to deny pointillisme. Th at is 
the doctrine that a physical theory’s fundamental quantities are defi ned at 
points of space or of spacetime, and represent intrinsic properties of such 
points or point-sized objects located there; so that properties of spatial or 
spatiotemporal regions and their material contents are determined by the 
point-by-point facts.1

I will fi rst describe this wider campaign (Section 2). Th en I will argue 
against pointillisme as regards the structure of space and/or spacetime itself 
(Sections 3 and 4). A companion paper (2006) argues against pointillisme in 
mechanics, especially as regards velocity.

I will argue that the geometrical structure of space, and/or the chrono-
geometrical structure of spacetime, involves extrinsic properties of points, 
typically properties that I shall call ‘spatially extrinsic’. Th e main debate 
here is whether properties of a point that are represented by vectors, tensors, 
connections etc. can be intrinsic to the point; typically, pointillistes argue 
that they can be. After formulating this debate in Section 3, I will in Sec-
tion 4 focus on Bricker’s (1993) discussion. For it is an unusually thorough 
pointilliste attempt to relate vectors and tensors in modern geometry to the 
metaphysics of properties. But Bricker exemplifi es a tendency I reject: the 
tendency to reconcile pointillisme with the fact that vectorial etc. properties 
seem extrinsic to points and point-sized objects, by proposing some hetero-
dox construal of the properties in question. Th us Bricker proposes that we 
should re-found geometry in terms of Abraham Robinson’s non-standard 
analysis, which rehabilitates the traditional idea of infi nitesimals (Robinson 
1996). I reply that once the spell of pointillisme is broken, such proposed 
heterodox foundations of geometry are unmotivated.

In saying this, I do not mean to be dogmatic. I of course agree that the 
nature of the continuum is an active research area, not only historically 

1 I think David Lewis fi rst used the art-movement’s name as a vivid label for this sort 
of doctrine: a precise version of which he endorsed.
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Mancosu (1996, Chapters 4f.), Leibniz (2001), Arthur (2006) but also in 
mathematics and philosophy. Indeed there are several heterodox mathemat-
ical theories of the continuum that are technically impressive and philo-
sophically suggestive. In this paper we will only make contact with one of 
them, viz. non-standard analysis, as invoked by Bricker. Th is is for the sim-
ple reason that all the other theories off er no support for my target, poin-

tillisme. More precisely: so far as I know, these theories do not suggest that 
fundamental quantities represent intrinsic properties of points or point-
sized bits of matter; because either they do not attribute such quantities to 
points, or they even deny that there are any points.2

But it is worth glimpsing at the outset the philosophical interest of these 
theories; so I here list the main ideas of some of them.

(1) Two theories that are essentially revisions of analysis (calculus) 
are non-standard analysis, and a diff erent rehabilitation of infi nitesimals 
(smooth infi nitesimal analysis; McClarty 1988, Bell 1998).

(2) Two other approaches are based on the idea of a space with no points, 
and so are no friends of pointillisme. Th at is: the collection of the space’s 
parts, ordered by parthood, has no atoms, i.e. no elements that themselves 
have no parts.

(i) Th e fi rst is essentially a revision of measure theory, and is mainly moti-
vated by its avoidance of the measure-theoretic paradoxes, like the Banach-
Tarski paradox. (It was pioneered by Carathéodory (1963); for philosophical 
introductions, cf. Skyrms (1993), Arntzenius (2000, Section 5, pp. 201–205; 
2004, Section 11); we will touch on the measure-theoretic paradoxes in 
Section 3.3.2, but for a full account cf. Wagon (1985).)

(ii) Th e second is essentially a revision of topology: topology is charac-
terized by relations between regions taken as primitive. (Cf. Menger (1978), 
Roeper (1997); for a philosophical introduction, cf. Arntzenius (2004, Sec-
tions 8–10).)

Finally, three comments about the connections between, and signfi cance 
of, such theories.

(a) Th ese theories have various connections, which this quick list does 
not bring out. For example, Nelson (1987) shows that a modicum of non-
standard analysis greatly simplifi es a rigorous development of the theories 
of measure and probability.

2 Broadly speaking, the second option seems more radical and worse for pointillisme; 
though in such theories, the structure of a set of points is often recovered by a con-
struction, e.g. on a richly structured set of regions.
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(b) All the theories mentioned have been developed largely without re-
gard to applications in physics. But Arntzenius discusses the prospects for 
doing physics, even quantum physics, in these spaces (ibid.; and for (2i), his 
2003). (Of course, within quantum physics there is a tradition of specula-
tion about discrete space or time (Kragh and Carazza 1994): for a rigor-
ous non-relativistic quantum theory on a discrete space that is empirically 
equivalent to the conventional theory, cf. Davies (2003).)

(c) As regards philosophy rather than physics, the main topic connected 
to the above theories is mereology: which has been discussed especially in 
connection with the measure-theoretic paradoxes, and (2i). Recent work 
includes Arntzenius and Hawthorne (2006, especially Sections II, IV) and 
Forrest (2004, especially Sections 3–6; 2002, especially Sections 5–10).

So I am very open to suggestions about heterodox treatments of the con-
tinuum. It is just that I fi nd the philosophical doctrine of pointillisme an 
insuffi  cient reason for rejecting the orthodox treatment. Similarly in my 
companion paper (2006) about mechanics; though with the diff erence that 
the proposals by the targeted authors, Tooley, Robinson and Lewis, do not 
invoke any well-established mathematical theory. Th at is: I again fi nd poin-

tillisme an insuffi  cient reason for rejecting orthodoxy.
I will conduct the discussion almost entirely in the context of “Newtoni-

an” ideas about space and time. Th is restriction keeps things simple: and at 
no cost, since both the debate and my arguments carry over to the treatment 
of space and time in relativistic, and even quantum, physics.

2. The wider campaign

As I mentioned, this paper is part of a wider campaign, which I now sketch. 
I begin with general remarks, especially about the intrinsic-extrinsic dis-
tinction among properties (Section 2.1). Th en I state my main claims; fi rst 
in brief (Section 2.2), then in more detail (Section 2.3).

2.1 Connecting physics and metaphysics

My wider campaign aims to connect what modern classical physics says 
about matter with two debates in modern analytic metaphysics. Th e fi rst de-
bate is about pointillisme; but understood as a metaphysical doctrine rather 
than a property of a physical theory. So, roughly speaking, it is the debate 
whether the world is fully described by all the intrinsic properties of all the 
points and/or point-sized bits of matter. Th e second debate is whether an 



Jeremy Butterfield184

object persists over time by the selfsame object existing at diff erent times 
(nowadays called ‘endurance’), or by diff erent temporal parts, or stages, exist-
ing at diff erent times (called ‘perdurance’).

Endeavouring to connect classical physics and metaphysics raises two 
large initial questions of philosophical method. What role, if any, should 
the results of science have in metaphysics? And supposing metaphysics 
should in some way accommodate these results, the fact that we live (ap-
parently!) in a quantum universe prompts the question why we should take 
classical physics to have any bearing on metaphysics. I address these ques-
tions in my (2004: Section 2, 2006a: Section 2). Here I just summarize my 
answers.

I of course defend the relevance of the results of science for metaphys-
ics; at least for that branch of it, the philosophy of nature, which considers 
such notions as space, time, matter and causality. And this includes classical 
physics, for two reasons.

First, much analytic philosophy of nature assumes, or examines, so-called 
‘common-sense’ aspects and versions of these notions: aspects and versions 
which refl ect classical physics, especially mechanics, at least as taught in 
high-school or elementary university courses. One obvious example is mod-
ern metaphysicians’ frequent discussions of matter as point-particles, i.e. 
extensionless point-masses moving in a void (and so interacting by action-
at-a-distance forces), or as continua, i.e. bodies whose entire volume, even 
on the smallest scales, is fi lled with matter. Of course, both notions arose in 
mechanics in the seventeenth and eighteenth century.

Second, classical physical theories, in particular mechanics, are much more 
philosophically suggestive, indeed subtle and problematic, than philosophers 
generally realize. Again, point-particles and continua provide examples. Th e 
idea of mass concentrated in a spatial point (indeed, diff erent amounts at 
diff erent points) is, to put it mildly, odd; as is action-at-a-distance inter-
action. And there are considerable conceptual tensions in the mechanics 
of continua; (Wilson (1998) is a philosopher’s introduction). Unsurpris-
ingly, these subtleties and problems were debated in the heyday of classical 
physics, from 1700 to 1900; and these debates had an enormous infl uence 
on philosophy through fi gures like Duhem, Hertz and Mach — to mention 
only fi gures around 1900 whose work directly infl uenced the analytic tradi-
tion. But after the quantum and relativity revolutions, foundational issues in 
classical mechanics were largely ignored, by physicists and mathematicians 
as well as by philosophers. Besides, the growth of academic philosophy after 
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1950 divided the discipline into compartments, labelled ‘metaphysics’, ‘phi-
losophy of science’ etc., with the inevitable result that there was less com-
munication between, than within, compartments.3

Setting aside issues of philosophical method, pointillisme and persistence 
are clearly large topics; and each is the larger for being treatable using the 
very diverse methods and perspectives of both disciplines, metaphysics and 
physics. So my campaign has to be selective in the ideas I discuss and in the 
authors I cite. Fortunately, I can avoid several philosophical controversies, 
and almost all technicalities of physics.4

But I need to give at the outset some details about how I avoid philo-
sophical controversy about the intrinsic-extrinsic distinction among prop-
erties, and about how this distinction diff ers from three that are prominent 
in mathematics and physics.

2.1.1 Avoiding controversy about the intrinsic-extrinsic distinction

My campaign does not need to take sides in the ongoing controversy about 
how to analyse, indeed understand, the intrinsic-extrinsic distinction. (For 
an introduction, cf. Weatherson (2002, especially Section 3.1), and the sym-
posium, e.g. Lewis (2001), that he cites.) Indeed, most of my discussion 
can make do with a much clearer distinction, between what Lewis (1983, 
p. 114) dubbed the ‘positive extrinsic’ properties, and the rest. Th is goes as 
follows.

Lewis was criticizing Kim’s proposal, to analyze extrinsic properties as 
those that imply accompaniment, where something is accompanied iff  it co-
exists with some wholly distinct contingent object, and so to analyze in-
trinsic (i.e. not extrinsic) properties as those that are compatible with being 

3 Th us I see my campaign as a foray into the borderlands between metaphysics and 
philosophy of physics: a territory that I like to think of as inviting exploration, since 
it promises to give new and illuminating perspectives on the theories and views 
of the two communities lying to either side of it — rather than as a no-man’s-land 
well-mined by two sides, ignorant and suspicious of each other!

4 Th ough persistence is not this paper’s topic, I note that among the philosophical 
issues my campaign avoids are several about persistence, such as: (a) the gain and 
loss of parts (as in Th eseus’ ship); (b) the relation of “constitution” between matter 
and object (as in the clay and the statue); (c) vagueness, and whether there are vague 
objects. Agreed, there are of course connections between my claims and arguments, 
and the various issues, both philosophical and physical, that I avoid: connections 
which it would be a good project to explore. But not in one paper, or even in one 
campaign!
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unaccompanied, i.e. being the only contingent object in the universe (for 
short: being lonely). Lewis objected that loneliness is itself obviously extrin-
sic. He also argued that there was little hope of amending Kim’s analysis. 
In particular, you might suggest that to be extrinsic, a property must either 
imply accompaniment or imply loneliness: so Lewis dubs these disjuncts 
‘positive extrinsic’ and ‘negative extrinsic’ respectively. But Lewis points out 
that by disjoining and conjoining properties, we can fi nd countless extrinsic 
properties that are neither positive extrinsic nor negative extrinsic; (though 
‘almost any extrinsic property that a sensible person would ever mention is 
positive extrinsic’ (1983, p. 115)).

Th is critique of Kim served as a springboard: both for Lewis’ own pre-
ferred analysis, using a primitive notion of naturalness which did other 
important work in his metaphysics (Lewis 1983a); and for other, metaphys-
ically less committed, analyses, developed by Lewis and others (e.g. Lang-
ton and Lewis 1998, Lewis 2001).

But I will not need to pursue these details. As I said, most of my campaign 
can make do with the notion of positive extrinsicality, i.e. implying accom-
paniment, and its negation. Th at is, I can mostly take pointillisme to advo-
cate properties that are intrinsic in the weak sense of not positively extrinsic. 
So this makes my campaign’s claims, i.e. my denial of pointillisme, logically 
stronger; and so I hope more interesting. Anyway, my campaign makes some 
novel proposals about positive extrinsicality: in this paper, I distinguish tem-
poral and spatial (positive) extrinsicality; and in the companion paper against 
pointillisme in mechanics, I propose degrees of (positive) extrinsicality.

2.1.2 Distinction from three mathematical distinctions

Both the murky intrinsic-extrinsic distinction, and the clearer distinction 
between positive extrinsics and the rest, are diff erent distinctions from 
three that are made within mathematics and physics, especially in those 
parts relevant to us: viz. pure and applied diff erential geometry. Th e fi rst of 
these distinctions goes by the name ‘intrinsic’/’extrinsic’; the second is called 
‘scalar’/’non-scalar’, and the third is called ‘local’/’non-local’. Th ey are as fol-
lows.

(i) Th e use of ‘intrinsic’ in diff erential geometry is a use which is com-
mon across all of mathematics: a feature is intrinsic to a mathematical object 
(structure) if it is determined (defi ned) by just the object as given, without 
appeal to anything extraneous — in particular a choice of a coordinate sys-
tem, or of a basis of some vector space, or of an embedding of the object into 
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another. For example, we thus say that the intrinsic geometry of a cylinder 
is fl at; it is only as embedded in R3

 that it is curved.
(ii) Diff erential geometry classifi es quantities according to how they 

transform between coordinate systems: the simplest case being scalars which 
have the same value in all coordinate systems. (Nevermind the details of how 
the other cases — vectors, tensors, connections, spinors etc. — transform.)

(iii) Diff erential geometry uses ‘local’ (as vs. ‘global’) in various ways. But 
the central use is that a mathematical object (structure) is local if it is associ-
ated with a point by being determined (defi ned) by the mathematical struc-
tures defi ned on any neighbourhood, no matter how small, of the point. In 
this way, the instantaneous velocity of a point-particle at a spacetime point, 
and all the higher derivatives of its velocity, are local since their existence 
and values are determined by the particle’s trajectory in an arbitrarily small 
neighbourhood of the point. Similarly, an equation is called ‘local’ if it in-
volves only local quantities. In particular, an equation of motion is called 
‘local in time’ if it describes the evolution of the state of the system at time 
t without appealing to any facts that are a fi nite (though maybe very small) 
time-interval to the past or future of t.

I will not spell out seriatim some examples showing that the two philo-
sophical distinctions are diff erent from the three mathematical ones. Given 
some lessons in diff erential geometry (not least learning to distinguish (i) to 
(iii) themselves!), providing such examples is straightforward work. Suffi  ce 
it to make three comments, of increasing relevance for this paper.

(1) It would be a good project to explore the detailed relations between 
these distinctions. In particular, the mathematical distinction (i) invites 
comparison with Vallentyne’s (1997) proposal about the intrinsic-extrinsic 
distinction. Besides, there are yet other distinctions to explore and compare: 
for example, Earman (1987) catalogues some dozen senses of ‘locality’.

But in this paper and its companion, two of the various diff erences 
amongst these distinctions are especially relevant.

(2) Th e fi rst is the diff erence between mathematical locality, (iii) above, 
and philosophical intrinsicality. Th e diff erence is clear for the case of instan-
taneous velocity. Th is is the main topic of my (2006); but the idea is that 
velocity has implications about the object at other times, for example that it 
persists for some time. So most philosophers say that instantaneous velocity 
is an extrinsic property. I agree. But emphasising its extrinsicness tends to 
make one ignore the fact that it is mathematically local, i.e. determined by 
the object’s trajectory in an arbitrarily small time-interval. And in pure and 
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applied diff erential geometry, it would be hard to over-estimate the impor-
tance of — and practitioners’ preference for! — such local quantities and lo-
cal equations involving them. (It is this locality that prompts me to speak of 
instantaneous velocity (and other local quantities) as ‘hardly extrinsic’.)

(3): In this paper, we will also note the diff erence between being a math-
ematical scalar, (ii) above, and being philosophically intrinsic. Th us philoso-
phers tend to think that any scalar quantity represents an intrinsic property 
of the points on which it is defi ned; (so that the pointilliste has only to worry 
about whether vectors, tensors etc. can represent intrinsic properties). But 
as we shall see in Section 4.4.1, that is wrong. For the scalar curvature R 

at a point p is surely extrinsic in the philosophical sense, since it gives in-
formation about the geometry of neighbourhoods of p. (R is also local and 
mathematically intrinsic; i.e. on the “intrinsic side“ of all three mathemati-
cal distinctions, (i)–(iii).)

2.2 Classical mechanics is not pointilliste, and can be perdurantist

2.2.1 Two versions of pointillisme

To state my campaign’s main claims, it is convenient to fi rst distinguish a 
weaker and a stronger version of pointillisme, understood as a metaphysical 
doctrine. Th ey diff er, in eff ect, by taking ‘point’ in pointillisme to mean, re-
spectively, spatial, or spacetime, point.

Taking ‘point’ to mean ‘spatial point’, I shall take pointillisme to be, rough-
ly, the doctrine that the instantaneous state of the world is fully described 
by all the intrinsic properties, at that time, of all spatial points and/or point-
sized bits of matter.

As I said in Section 2.1, my campaign can mostly take ‘intrinsic’ to mean 
‘lacking implications about some wholly distinct contingent object’; in other 
words, to mean the negation of Lewis’ ‘positive extrinsic’ (i.e. his ‘implying 
accompaniment’). But for this version of pointillisme, I will take ‘intrinsic’ 
to mean ‘spatially intrinsic’. Th at is, attributing such a property to an object 
carries no implications about spatially distant objects; but it can carry impli-
cations about objects at other times. (Such objects might be other temporal 
parts of the given object.) So I shall call this version, ‘pointillisme as regards 
space’.

On the other hand: taking ‘point’ to mean ‘spacetime point’, I shall take 
pointillisme to be, roughly, the doctrine that the history of the world is fully 
described by all the intrinsic properties of all the spacetime points and/or 
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all the intrinsic properties at all the various times of point-sized bits of mat-
ter (either point-particles, or in a continuum). And here I take ‘intrinsic’ to 
mean just the negation of Lewis’ ‘positive extrinsic’. Th at is, it means ‘both 
spatially and temporally intrinsic’: attributing such a property carries no 
implications about objects at other places, or at other times. I shall call this 
stronger version, ‘pointillisme as regards spacetime’.

So to sum up: pointillisme as regards space vetoes spatial extrinsicality; but 
pointillisme as regards spacetime also vetoes temporal extrinsicality.

On either reading of pointillisme, it is of course a delicate matter to relate 
such metaphysical doctrines, or the endurance-perdurance debate, to the 
content of specifi c physical theories. Even apart from Section 2.1’s ques-
tions of philosophical method, one naturally asks, for example, how phi-
losophers’ idea of intrinsic property relates to the idea of a physical quantity. 
For the most part, I shall state my verdicts about such questions case by 
case. But one main tactic for relating the metaphysics to the physics will be 
to formulate pointillisme as a doctrine relativized to (i.e. as a property of ) 
a given physical theory (from Section 2.3 onwards). Anyway, I can already 
state my main claims, in terms of these two versions of pointillisme. More 
precisely, I will state them as denials of two claims that are, I think, common 
in contemporary metaphysics of nature.

2.2.2 Two common claims

Th ough I have not made a survey of analytic metaphysicians, I think many 
of them hold two theses, which I will dub (FPo) (for ‘For Pointillisme’) and 
(APe) (for ‘Against perdurantism’); as follows.

(FPo): Classical physics — or more specifi cally, classical mechanics — sup-
ports pointillisme: at least as regards space, though perhaps not as regards 
spacetime. Th ere are two points here: — 

(a) Classical physics is free of various kinds of “holism”, and thereby 
antipointillisme, that are suggested by quantum theory. Or at least: classical 
mechanics is free. (With the weaker claim, one could allow, and so set aside, 
some apparently anti-pointilliste features of advanced classical physics, e.g. 
anholonomies in electromagnetism and the non-localizability of gravita-
tional energy in general relativity: features rich in philosophical suggestions 
(Batterman 2003, Belot 1998, Hoefer 2000) — but not for this paper!)

(b) Th e concession, ‘perhaps not as regards spacetime’, arises from the 
endurance-perdurance debate. For it seems that pointillisme as regards 
spacetime must construe persistence as perdurance; (while pointillisme as 
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regards space could construe it as endurance). And a well-known argument, 
often called ‘the rotating discs argument’, suggests that perdurance clash-
es with facts about the rotation of a continuum (i.e. a continuous body) 
in classical mechanics. So the argument suggests that classical mechanics 
must be understood as “endurantist“. Besides, whether or not one endorses 
the argument, in classical mechanics the persistence of objects surely can 

be understood as endurance — which confl icts with pointillisme as regards 
spacetime.

(Th e considerations under (a) and (b) are usually taken as applying equal-
ly well to non-relativistic and relativistic classical mechanics: an assumption 
I largely endorse.)

I also think that many metaphysicians would go further and hold that:
(APe) Classical mechanics does indeed exclude pointillisme as regards 

spacetime: their reason being that this pointillisme requires perdurance and 
that they endorse the rotating discs argument. So they hold that in classical 
mechanics the persistence of objects must be understood as endurance, and 
that this forbids pointillisme as regards spacetime.

2.2.3 My contrary claims

I can now state the main position of my wider campaign. Namely, I deny 

both claims, (FPo) and (APe), of Section 2.2.2. I argue for two contrary 
claims, (APo) (for ‘Against Pointillisme) and (FPe) (for ‘For perdurantism’), 
as follows.

(APo): Classical mechanics does not support pointillisme.
By this I do not mean just that:

(a) it excludes pointillisme as regards spacetime.
Nor do I just mean:

(b) it allows one to construe the persistence of objects as endurance.
(But I agree with both (a) and (b).) Rather, I also claim: classical mechan-

ics excludes pointillisme as regards space. Th at is: it needs to attribute spa-
tially extrinsic properties to spatial points, and/or point-sized bits of matter. 
(But this will not be analogous to the kinds of “holism” suggested by quan-
tum theory.)

(FPe) Th ough (as agreed in (APo)) classical mechanics excludes poin-

tillisme as regards spacetime (indeed, also: as regards space): classical me-
chanics is compatible with perdurance. Th at is: despite the rotating discs 
argument, one can be a “perdurantist” about the persistence of objects in 
classical mechanics. Th e reason is that once we reject pointillisme, perdur-
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ance does not need persistence to supervene on temporally intrinsic facts. 
In fact, perdurantism can be defended by swallowing just a small dose of 
temporal extrinsicality.

So to sum up my wider campaign, I claim that: —
(APo) Classical mechanics denies pointillisme, as regards space as well as 

spacetime. For it needs to use spatially extrinsic properties of spatial points 
and/or point-sized bits of matter, more than is commonly believed.

(FPe) Classical mechanics permits perdurantism. It does not require 
temporally extrinsic properties (of matter, or objects), in the sense of requir-
ing persistence to be endurance: as is commonly believed. A mild dose of 
temporal extrinsicality can reconcile classical mechanics with perdurance.

To put the point in the philosophy of mind’s terminology of ‘wide’ and 
‘narrow’ states, meaning (roughly) extrinsic and intrinsic states, respectively: 
I maintain that classical mechanics:

(APo) needs to use states that are spatially wide, more than is commonly 
believed; and

(FPe) does not require a specifi c strong form of temporal width, viz. en-
durance. With a small dose of temporal extrinsicality, it can make do with 
temporally quite narrow states — and can construe persistence as perdur-
ance.

2.3 In more detail …

So much by way of an opening statement. I will now spell out my main 
claims in a bit more detail: fi rst (APo), and then, more briefl y, (FPe).

2.3.1 Four violations of pointillisme

I will begin by stating pointillisme as a trio of claims that apply to any physi-
cal theory; and making two comments. Th en I list four ways in which (chro-
no)-geometry and classical mechanics violate pointillisme: three will form 
the main topics of this paper and its companion.

Th e trio of claims is as follows:
(a) the fundamental quantities of the physical theory in question are to 

be defi ned at points of space or of spacetime;
(b) these quantities represent intrinsic properties of such points;
(c) models of the theory — i.e. in physicists’ jargon, solutions of its equa-

tions, and in metaphysicians’ jargon, possible worlds according to the the-
ory — are fully defi ned by a specifi cation of the quantities’ values at all such 
points.
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So, putting (a)–(c) together: the idea of pointillisme is that the theory’s 
models (or solutions or worlds) are something like conjunctions or mere-
ological fusions of “ultralocal facts”, i.e. facts at points.

Two comments. First: the disjunction in (a), ‘at points of space or of 
spacetime’, corresponds to Section 2.2’s distinction between pointillisme as 
regards space, and as regards spacetime. Nevermind that it does not imply 
the convention I adopted in Section 2.2, that pointillisme as regards space-
time is a stronger doctrine: since it vetoes temporally extrinsic properties, as 

well as spatially extrinsic ones. Th e context will always make it clear whether 
I mean space or spacetime (or both); and whether I mean spatially or tem-
porally extrinsic (or both).

Second: Th ough I have not made a systematic survey, there is no doubt 
that pointillisme, especially its claims (a) and (b), is prominent in contem-
porary metaphysics of nature, especially of neo-Humean stripe. Th e prime 
example is David Lewis’ metaphysical system, which is so impressive in its 
scope and detail. One of his main metaphysical theses, called ‘Humean su-
pervenience’, is a version of pointillisme: I will return to it in Section 3.2.

When we apply (a)–(c) to classical mechanics, there are, I believe, four 
main ways in which pointillisme fails: or, more kindly expressed, four con-
cessions which pointillisme needs to make. Th e fi rst three violations (con-
cessions) occur in the classical mechanics both of point-particles and of 
continua; the fourth is specifi c to continua. And the fi rst two are addressed 
in this paper; the third is discussed in the companion paper (2006).

(1) Th e fi rst violation is obvious and minor. Whether matter is conceived 
as point-particles or as continua, classical mechanics uses a binary relation of 
occupation, ‘… occupies …’, between bits of matter and spatial or spacetime 
points (or, for extended parts of a continuum: spatial or spacetime regions). 
And this binary relation presumably brings with it extrinsic properties of 
its relata: it seems an extrinsic property of a point-particle (or a continuum, 
i.e. a continuous body) that it occupy a certain spatial or spacetime point or 
region; and conversely.

Agreed, there is more to be said about this claim (as always in philoso-
phy!): both about (a) the connections between the intrinsic-extrinsic dis-
tinction among properties and the classifi cation of relations, and (b) how 
the individuation of spatial or spacetime points or regions might depend 
on matter (the “relational conception“ of space or spacetime). I will discuss 
(a) and (b), albeit briefl y in Sections 3.3. But anyway, I will there endorse 
the claim. Th at is: the concession will remain in force: the pointilliste about 
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classical mechanics should accept this binary relation of occupation, and the 
modicum of extrinsicality it involves.

(2) Classical mechanics (like other physical theories) postulates struc-
ture for space and/or spacetime (geometry or chrono-geometry); and this 
involves a complex network of geometric relations between, and so extrinsic 
properties of, points. Th is concession is of course more striking as regards 
space than time: three-dimensional Euclidean geometry involves more 
structure than does the real line. Th is will be the main topic of this paper.

(3) Mechanics needs of course to refer to the instantaneous velocity or 
momentum of a body; and this is temporally extrinsic to the instant in ques-
tion, since for example it implies the body’s existence at other times. (But 
it is also local in the sense of (iii), Section 2.1.2.) So this second violation 
imposes temporal, rather than spatial, extrinsicality; i.e. implications about 
other times, rather than other places.

Th is is the main topic of Butterfi eld (2006). But I should stress here that 
this third violation is mitigated for point-particles, as against continua. For a 
pointilliste can maintain that the persistence of point-particles supervenes on 
facts that, apart from the other violations (i.e. about ‘occupies’ and (chrono)-
geometry), are pointillistically acceptable: viz. temporally intrinsic facts about 
which spacetime points are occupied by matter. In fi gurative terms: the void 
between distinct point-particles allows one to construe their persistence in 
terms of tracing the curves in spacetime connecting points that are occupied 
by matter. I develop this theme in my (2005). On the other hand: for a con-
tinuous body, the persistence of spatial parts (whether extensionless or ex-
tended) does not supervene on such temporally intrinsic facts. Th is is the core 
idea of the rotating discs argument, mentioned in Section 2.2.2.

To sum up: the rotating discs argument means that pointillisme fi ts better 
with point-particles than with continua. To put the issue in terms of Sec-
tion 2.2’s two forms of pointillisme: the strong form of pointillisme, pointil-

lisme as regards spacetime, fails for the classical mechanics of continua, even 
apart from the other concessions mentioned.

(4) Finally, there is a fourth way that the classical mechanics of continua 
violates pointillisme: i.e., a fourth concession that pointillisme needs to make. 
Unlike the rotating discs argument, this violation seems never to have been 
noticed in recent analytic metaphysics; though the relevant physics goes 
back to Euler. Namely, the classical mechanics of continua violates (the 
weaker doctrine of ) pointillisme as regards space, because it must be formu-
lated in terms of spatially extended regions and their properties and rela-
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tions. But in this paper, I set this fourth violation aside entirely; my (2006a) 
gives details.

So to sum up these four violations, I claim (APo): classical mechanics 
violates pointillisme. Th is is so even for the weaker doctrine, pointillisme as 
regards space. And it is especially so, for the classical mechanics of continua 
rather than point-particles.

2.3.2 For perdurantism

I turn to Section 2.2.3’s second claim, (FPe): that once pointillisme is re-
jected, perdurantism does not need persistence to supervene on temporally 
intrinsic facts, and can be defended for classical mechanics provided it swal-
lows a small dose of temporal extrinsicality.

About (FPe) I can be much briefer, since this paper will not need de-
tails. I will just identify this small dose: it is the extrinsicality of the third 
violation of pointillisme above — in particular, the presupposition of persist-
ence by the notion of a body’s instantaneous velocity. Th anks to the rotating 
discs argument, ‘body’ here means especially ‘point-sized bit of matter in a 
continuum’; since for point-particles we can construe persistence as per-
durance without having to take this dose. Elsewhere (2004, 2004a, 2006) 
I argue that for a “naturalist” perdurantist, this dose is small enough to
swallow.

3.  Can properties represented by vectors be intrinsic to
a point?

3.1 Prospectus

I turn to the geometrical structure of space, and/or the chrono-geometri-
cal structure of spacetime. I will argue that this structure involves extrinsic 
properties, especially spatially extrinsic properties. I will undertake three 
specifi c tasks, in Sections 3.2, 3.3, 4 respectively.

In Section 3.2, I present Lewis’ version of pointillisme. Th ough this ver-
sion is in some ways logically stronger than I need, it is important to present 
it. Not only has it been a focus of recent metaphysical discussion; it is also 
needed for Section 4.

In Sections 3.3 and 4, I argue in detail that pointillisme needs to be quali-
fi ed to accommodate the structure of space and/or spacetime. I think the 
need for this qualifi cation is uncontentious; in particular, it is agreed by 
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Lewis. But how exactly to state the qualifi cation is a matter that is both im-
portant and unresolved.

It is important for three reasons. First, all physical theories of course ap-
peal to space (and/or spacetime). Second, they all represent the properties 
that encode the structure of space or spacetime, with mathematical entities 
such as vectors, tensors, connections etc. So the question arises: can proper-
ties that are so represented be intrinsic to a point? Th e third reason is taken 
up in the companion paper (2006): it is that physical theories also represent 
the other properties they mention, i.e. properties of matter such as velocity, 
momentum etc., by such mathematical entities as vectors, tensors, connec-
tions etc.

So the question — can properties represented by vectors, tensors etc. be intrin-

sic to a point? — is at the centre of this paper (and its companion). First, in 
Section 3.3, I will lead up to this question by discussing, in a broadly meta-
physical way, how to represent the structure of space or spacetime. (I will 
concentrate on the notion of length, and so on space rather than spacetime; 
but this discussion carries over intact to the case of spacetime.) Once the 
question is posed, Section 4 addresses it in detail, using as a foil Bricker’s 
(1993).

As I said in Section 1, Bricker’s paper illustrates how strongly some con-
temporary metaphysicians are attracted by pointillisme. For recognizing that 
they must accept vectorial properties in physical theories, and that these seem 

not to be intrinsic to points, they propose to save pointillisme by advocating a 
heterodox construal of the property. Th us in Section 4, Bricker will construe 
the metric tensor of diff erential geometry in terms of non-standard analysis. 
(And in the companion paper, Tooley and others will construe instantaneous 
velocity as intrinsic.) My own view will of course be that there is no need for 
such heterodoxy: instead, we can and should reject pointillisme.

My discussion will be simplifi ed by a restriction. I will consider only prop-
erties represented by vectors and tensors, which I will for short call vectorial 

properties and tensorial properties: not those represented by other mathemat-
ical entities such as connections. Th is restriction will be natural, in that:

(i) vectors and tensors are about the simplest of the various mathematical 
entities that physical theories use to represent properties and relations — so 
they are the fi rst case to consider;

(ii) the restriction is common in the literature; in fact most of the authors 
I discuss (here and in the companion paper) consider only vectorial proper-
ties.
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3.2 Humean supervenience

I will assume familiarity with the main ideas of Lewis’ metaphysical system, 
above all his notions of possible world and natural property. Central to this 
system is Lewis’ version of pointillisme, which he says (1994, p. 494) is in-
spired by classical physics. He calls this doctrine ‘Humean supervenience’. It 
is stronger than pointillisme as defi ned in Section 2.3, in that it is not relative 
to a theory. Roughly, it is relative to a possible world; (of course a metaphy-
sician like Lewis who accepts the idea of a law of nature can link relativiza-
tions to a theory and to a possible world using the idea of the “complete“ 
theory of a world, say as an axiomatization of all its laws of nature). And 
Lewis claims that it holds at the actual world.

Th e idea of Humean supervenience is that all truths supervene on truths 
about matters of local particular fact: where ‘matters of local particular fact’ 
is to be understood in terms of Lewis’ metaphysics of natural properties, 
with the properties having spacetime points, or perhaps point-sized bits of 
matter, as instances. Th us he writes that Humean supervenience

… says that in a world like ours, the fundamental relations are exactly 
the spatiotemporal relations: distance relations, both spacelike and time-
like, and perhaps also occupancy relations between point-sized things and 
spacetime points. And it says that in a world like ours, the fundamen-
tal properties are local qualities: perfectly natural intrinsic properties of 
points, or of point-sized occupants of points. Th erefore it says that all else 
supervenes on the spatiotemporal arrangement of local qualities through-
out all of history, past and present and future. (1994, pp. 225–226.)5

Humean supervenience, so defi ned, is not widely believed — few philoso-
phers sign up to all the notions deployed in its statement. But it has been a 
natural focus of metaphysicians’ attention in the last twenty years, not least 
because Lewis has been the pre-eminent neo-Humean. In the literature, we 
can distinguish three broad groups of topics:

(i) Issues about whether to analyse law, causation, chance etc., and “high-
er-level“ concepts about mind and language, in terms of the notions of 
Lewis’ framework. Lewis (1986, p. xi–xiv) sketches how his work on all 
these topics provides a “battle-plan”: i.e. roughly, a sequence of superven-
ience claims for these concepts. More generally, much literature of neo-

5 Cf. also his (1986, pp. ix–x).
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Humean stripe is concerned with how truths using familiar central concepts 
of common-sense knowledge and belief — concepts such as law, causation, 
the persistence of objects and mental and semantic concepts, such as belief 
and reference — might supervene on a basis acceptable to Humeans, though 
perhaps not exactly the basis proposed by Lewis. (For example: for laws, cf. 
Earman and Roberts (2006).) And some of these truths pose a challenge in 
that they seem not to thus supervene; cf. (iii) below.

(ii) General metaphysical issues about the notions of Lewis’ framework, 
in particular possible worlds and natural properties, and/or about related no-
tions. For example, one well-known issue is: can possible worlds and natural 
properties be construed less “realistically” than Lewis proposes (e.g. Taylor 
1993), and yet do the philosophical work they are meant to do? More rel-
evant to us will be Lewis’ view of the intrinsic-extrinsic distinction, viz. that 
it can be analysed in terms of perfectly natural properties; (details in Section 
4.2). But as discussed in Sections 2.1.1 and 2.2.1, I can for the most part use 
only a much clearer distinction, viz. between the positive extrinsic proper-
ties and the rest, sub-divided in terms of temporal and spatial implications 
(or lack of them).

(iii) Direct threats to Humean supervenience. Th ere are two main ex-
amples. First, chance; which Lewis addresses in detail in (1986, pp. xiv–xvi, 
121–131), and to his greater satisfaction in (1994). Second, persistence. For 
Lewis as a Humean wants to be perdurantist, as well as pointilliste in the 
sense of Humean supervenience: this means that he faces the rotating discs 
argument.

In this paper, I can set aside all of (i) and (iii), and all of (ii) except for the 
intrinsic-extrinsic distinction.

3.3 Accommodating space and spacetime

3.3.1 An agreed concession

As I mentioned, pointillisme’s need to accommodate the structure of space 
and/or spacetime is agreed by all parties: in particular, by Lewis. In both 
the quotations above, Lewis includes relations of spatiotemporal distance 
(spacelike and timelike) in the supervenience basis. So his Humean super-
venience is not so pointilliste, at least as regards the structure of space and/or 
spacetime, as it might at fi rst seem.

But no doubt even the most ardent pointilliste will fi nd the inclusion sen-
sible. Th at is: no one will hold that the structure of space and/or spacetime, 
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in particular spatial and/or spatiotemporal metrical relations, is to super-
vene on intrinsic properties of points.6

Th e natural thing to say is, instead, that the points and these metrical re-
lations (and maybe also some spatiotemporal but non-metrical relations) 
form collectively a background, or canvas, on which other physical quanti-
ties taking various values get “painted”. And it is to these latter that pointil-

lisme’s doctrines are to apply.
But there is no consensus (indeed, not much discussion) about how pre-

cisely to state the concession. More’s the pity, since apart from the conces-
sion’s own importance, it leads to the more general question (taken up in 
the following Subsections) how pointillisme can accommodate vectorial and 
tensorial properties.

I begin with a preliminary issue. Th e concession obviously relates to the 
debate between relationist and substantivalist views of space and spacetime; 
and though I will not pursue this debate, I should register that this conces-
sion is not meant to prejudge it. Th ere are two points here.

(i) Th ough I spoke like a substantivalist, about a canvas of points, with 
various metrical and non-metrical relations between them, it is safe to as-
sume that a relationist would appeal to similar relations holding between 
items of their preferred ontology, i.e. bodies. (I set aside whether Leibniz’s 
monads with only their intrinsic properties might be enough to subvene all 
spatial and spatiotemporal facts!)

(ii) Similarly, my talk of a canvas of points, with metrical and non-met-
rical relations between them, was not meant to deny that the metric (or the 
other relations) could be dynamical, i.e. infl uenced by matter, in the way 
they are in general relativity.

So our question is what exactly metrical (and other geometrical) struc-
tures require. As physical geometry has developed in the last two hundred 
years, these requirements have not only become subtler but have also be-
come bound up with other properties and relations, especially of matter, in 

6 Here I recall this paper’s restriction to classical mechanics. So I of course set aside 
speculations in quantum gravity that classical spacetime structure emerges some-
how from a “quantum pre-geometry“: speculations which, I agree, might have this 
structure emerge from (or even supervene on) intrinsic properties of some point-
like objects. But I doubt it: most schemes for quantum pre-geometry are tho-
roughly “relational“ rather than pointilliste. For surveys of such speculations, cf. e.g. 
Monk (1997), Butterfi eld and Isham (1999, Sections 1–4; 2001, Section 5); for a 
brief discussion in relation to Lewis’ Humean supervenience, cf. Oppy (2000, p. 88,
91–94).
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ways which threaten pointillisme. Th is issue will extend to Section 4. But let 
us start by raising the issues involved in as simple a context as possible: the 
length of a straight line in elementary geometry.

3.3.2 Th e length of a line

Th e length of a line is the topic of a venerable paradox. Th e length of a 
straight line should surely be the sum of the lengths of a decomposition, 
i.e. an exhaustive set of mutually non-overlapping parts; and it seems legiti-
mate to take as these parts the line’s constituent points; but the length of 
each point is zero, and the sum of all these zeroes is presumably (though a 
continuously large sum) zero — what else could it be? So the length of the 
line is zero!

I stated this paradox in its most familiar form, as about summing lengths. 
But of course it can also be stated in philosophical terms, as about super-
venience: the length of a line surely does not supervene on the lengths of its 
points, on pain of being zero. Th at is no doubt why, as discussed in Section 
3.3.1, no pointilliste holds that lengths (or other metrical properties of lines, 
or indeed metrical relations between points) supervene on intrinsic proper-
ties of points.7

Th is paradox is of course one of many that eventually prompted the de-
velopment of measure theory. And as noted in (2i) and (c) of Section 1, 
measure theory invites philosophical scrutiny because (i) it has some well-
nigh paradoxical results of its own, like the Banach-Tarski paradox, and (ii) 
it is connected to mereology. But I shall not need details about these topics. 
I only need to present:

(a) a philosophical reply to this paradox; though it does not block the para-
dox, it introduces an important metaphysical trichotomy among relations;

(b) the main idea of the technical measure-theoretic reply to this para-
dox.

3.3.2.A Th e philosophical reply. Th e philosophical reply is just that 
length is a property of the line as a whole, where ‘line as a whole’ can be 
taken to mean either the set, or the mereological fusion, of its points (or of 

7 Th ere is of course a similar failure of supervenience for an extensive quantity such 
as mass, applied to a continuous body. For the point-sized parts of such a body have 
zero mass, so that the mass of the body is not the (uncountable) sum of the masses 
of those parts. Hawthorne notes this, while assessing how Lewis’ metaphysics treats 
quantities (2006); and we will return to it in Section 4.6.
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its extended parts). Th at is, the length does not supervene on the properties 
of the points (or other parts). Th is is surely true, so far as it goes. But it is 
not enough to block the paradox, since it does not pinpoint what is wrong 
with the premise that the length of a straight line is the sum of the lengths 
of an exhaustive set of mutually non-overlapping parts. (Th e technical reply 
will do this.)

However, this reply prompts a trichotomy among relations correspond-
ing to the intrinsic-extrinsic dichotomy among properties: a trichotomy that 
will be useful in what follows. Lewis states the trichotomy clearly (1983a, p. 
26 fn. 16; 1986a, p. 62); and I shall adopt his proposed terminology (which 
has become widespread). Th ough he explains it in terms of his preferred un-
derstanding of intrinsic and extrinsic properties (viz. defi ned in terms of his 
natural properties), the trichotomy can be explained in the very same words, 
using other understandings of intrinsic and extrinsic. In particular, it can be 
thus explained using Section 2.1.1’s suggested understanding of ‘extrinsic’ as 
‘positive extrinsic’ and ‘intrinsic’ as ‘not positive extrinsic’; (or using Lewis’ 
“second favourite” analysis developed by Langton and him (1998, p. 129)). 
Th e trichotomy also uses the idea of the mereological fusion, or composite, of 
objects: an idea I am happy to accept, and for which there is a powerful argu-
ment (Lewis 1986a, pp. 212–213, developed by Sider 2001, pp. 121–139).

(1) An internal relation is determined by the intrinsic properties of its 
relata. So if xRy, and x′ matches x in all intrinsic properties, and y′ matches y 

in all intrinsic properties, then we must have x′Ry′. So any relation of simi-
larity or diff erence in intrinsic respects is internal; for example, if height is 
an intrinsic property, then ‘being taller than’ is an internal relation.

(2) On the other hand, there are relations, notably relations of spatio-
temporal distance, that are not internal, but do supervene on the intrinsic 
nature of the composite (mereological fusion) of the relata. Th us suppose x, 

y are point-particles 1 metre apart. Th en it seems reasonable to say both of 
the following: — 

(i) Th ere could be point-particles x′, y′ that intrinsically match x and y 

respectively, and that are 2 metres apart — so that distance is not internal. 
But on the other hand:
(ii) Any object intrinsically matching the fusion or composite of x and y 

would have two parts intrinsically matching x and y, 1 metre apart. Ac-
cordingly, Lewis calls relations that supervene on the intrinsic nature of 
the fusion of the relata, external; and he takes (ii) to show that spatiotem-
poral relations are external.
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(3) Finally, there are relations that do not supervene even on the intrinsic 
nature of the composite of the relata; i.e. relations that are neither internal 
nor external. Lewis’ example is the relation having the same owner: x and y 

could intrinsically match x′ and y′ respectively, and their composites might 
also match; and yet x and y might have the same owner, while x′ and y′ do 
not. But more relevant to us than ownership, geometry and mechanics pro-
vide many examples of such relations. Th e objects x, y, x′, y′ could be solid 
bodies, again with each pair, x, x′ and y, y′, intrinsically matching, and the 
composites x + y, x′ + y′ also matching — and yet the centre of mass of x and 
y might be a certain distance from a body of some kind Z, while the centre 
of mass of x′ and y′ is not.

3.3.2.B Th e technical reply. Th e technical reply to the paradox of length 
comes from measure theory. It blocks the paradox by denying the premise 
that the length of a straight line is the sum of the lengths of any decompo-
sition (exhaustive set of mutually non-overlapping parts) of the line. It up-
holds this only for certain decompositions. Th e main idea is to consider only 
decompositions containing points and intervals, and to accept the additivity 
of length for at most denumerably large sums. Th ese ideas give a rich the-
ory which can be extended to cover area and volume, as well as length; and 
which underpins the theory of integration.

But we do not need further details of measure theory. For us the point is 
that, even in the elementary geometry of Euclidean space (R, R2

 etc.), we 
cannot say all that is true in terms just of intrinsic properties of points. For we 
need to assign lengths to spatial intervals. And — to use Lewis’ terms — the 
length of an interval is surely not an internal relation between the interval’s 
end-points, since any two points seem to match in intrinsic properties. Be-
sides, the length of an interval does not seem to be an internal relation be-
tween all the interval’s uncountably many points, since: (i) the points of any 
two intervals seem to match pairwise in intrinsic properties, and (ii) addi-
tivity of length fails for an uncountable set.

On the other hand, it seems reasonable to say, as Lewis does, that:
(a) intervals are composites or fusions of their points; and
(b) intervals matching in their intrinsic properties are congruent; (cf. (2) 

(ii) above).
If we say (a) and (b), then it follows that the length of a straight interval 

is an external relation among the interval’s points. (So far, this is a relation of 
uncountable polyadicity: the next Subsection will ask whether the relation can 
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be taken to be just a dyadic relation between the interval’s two end-points.)
To sum up: to describe length, even the length of a straight interval in 

Euclidean geometry, pointillisme must concede that it needs to go beyond 
intrinsic properties of points, and even relations that are internal in Lewis’ 
sense. But so far, it seems (cf. (2)(ii) in Section 3.3.2.A and (b) above) it can 
manage with what Lewis calls external relations.8

3.3.3 Accommodating more geometry

Th e further development of geometry, including more general geometries 
than the Euclidean line or plane, reinforces the point that we cannot say 
all that is true in terms just of intrinsic properties of points. But as we shall 
see, it is doubtful that we can manage with just Lewis’ category of external 
relations. Th at is, it is doubtful that all pointillisme needs to do, in order to 
accommodate spatial and spacetime structure, is to admit the network of 
external relations of spatial and spatiotemporal distance.

Talk of ‘spatial and spatiotemporal relations’ tends to suggest that space 
or spacetime is a metric space, in the usual mathematical sense that (given a 
unit of length) there is a real-valued function on pairs of points: to any pair 
of points x, y is assigned a distance d(x, y) ∈ R. (So each real number de-
termines a binary relation on points; and for a relativistic spacetime, d need 
not be positive-defi nite.) But the development of geometry and physics has 
shown that this is much too limited a conception of spatial (or spatiotempo-
ral) structure. One needs to distinguish various subtly related levels of struc-
ture: for example, geometers distinguish topological structure, diff erential 
structure, metrical structure, and many more. Besides, most of these kinds 
of structure include defi nitions of irreducibly global features of the space 
concerned; for example, a space can have the global topological feature of 
being simply connected, i.e. such that all closed curves can be continuously 
deformed to a point.

8 Incidentally, returning to the original paradox of length: the practice of measure 
theory seems indiff erent between the following options (and surely metaphysicians 
can be as well):
a)  to allow ab initio that each point has a length, viz. zero; and avoid paradox by 

denying uncountable additivity of length;
b)  to ascribe length primarily only to sets of points in a certain well-behaved fa-

mily of sets.
But the technical need for the family to have certain closure properties is likely to 
lead to singleton sets of points being included — as in the usual choice of family, the 
Borel sets.
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But here I will focus only on “local” metrical structure.9
 Even without de-

veloping the formal details (which go back to Gauss and Riemann), we will 
be able to see that geometry (and more generally physics) needs to attribute 
to points both vectorial and tensorial properties — raising the question, pur-
sued in the next Subsection, whether pointillisme can accommodate such 
properties.

Gauss and Riemann proposed that we take as the primary notion, the 
length of a curve between two points; (so since a pair of points is in gen-
eral connected by infi nitely many curves, any such pair is associated with 
infi nitely many lengths, not just one). Th is proposal is adopted by modern 
spacetime theories, in particular by the most successful such theory, general 
relativity. So an advocate of pointillisme (or some similar doctrine of local 
supervenience, such as Humean supervenience) would do well to formulate 
their doctrine so as to incorporate, or at least allow for, this proposal.

At fi rst sight, it seems that the pointilliste can manage just fi ne. She only 
needs to apply Lewis’ idea of external relations (or perhaps, some similar 
notion), not to the endpoints of a straight interval or to all the points of a 
straight interval, but to all the points of an arbitrary curve. Th us she can take 
an arbitrary curve as the fusion of its points, and the length of the curve as 
an external relation, albeit of uncountable polyadicity, among the points: 
an external relation which determines an intrinsic property of the fusion. I 
presume that Lewis, who was well aware of the Gauss-Riemann concep-
tion of geometry, would have said this. Th at is, he would have taken ‘spatio-
temporal distance relations’ in his defi nition of Humean supervenience to 
allow for this conception — and not to be committed to the idea of a metric
space.10

Besides, the structure required to defi ne the lengths of all curves is given 
“locally” in a way that at fi rst sight seems congenial to a pointilliste. In par-
ticular, it seems that the pointilliste does not need to postulate continuously 
many external relations, each of uncountable polyadicity, one for each con-
gruence-class of curves. For:

9 I put ‘local’ in scare-quotes, since I here intend a vaguer meaning than that of (iii) 
of Section 2.1.2. But in what follows, the meaning will always be clear from the 
context. Note also that though I will discuss only space, all I say carries over intact 
to spacetime.

10 But Lewis seems never to have pursued the question exactly what relations he 
should propose as fundamental for modern geometry and topology; and we shall 
shortly see trouble for him, as for other pointillistes.
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(i) measure theory can be extended to apply to this kind of geometry, so 
that the length of a curve is the sum of the lengths of a countable decom-
position of it;

(ii) similarly, calculus can be extended to apply to this kind of geometry, 
so that the length of a curve is given by an integral along it — intuitively, an 
uncountable sum of infi nitesimal contributions one for each infi nitesimal 
element of the curve.

Th ese features, (i) and (ii), refl ect the fact that the Gauss-Riemann con-
ception of metrical structure presupposes topological and diff erential struc-
ture: which make sense, respectively, of the notions of continuous function, 
and diff erentiable function.

But there is a devil in the details. Th e details of how to defi ne the length 
of a curve require us to attribute vectors and tensors to a point. A bit more 
precisely: we need to attribute:

(i) to any point on any curve, the tangent vector to the curve at that point; 
and so

(ii) to any point, the set of all such tangent vectors at it (which form a 
vector space, called the tangent space);

(iii) to any point, a metric tensor which maps pairs of tangent vectors at 
the point to real numbers — generalizing the elementary scalar product of 
two vectors. (More details about (i)–(iii) in the next Subsection.)

Th us the pointilliste has to face — already in geometry, even before consider-
ing physics’ description of matter —  the question announced in Section 3.1: 
can a property represented by a vector or a tensor be intrinsic to a point?

4. Accommodating tangent vectors and the metric tensor

4.1 Bricker and others

As I announced in Section 3.1, my main eff ort in this Section will be to re-
port and criticise Bricker’s (1993) discussion of this question, for metrical 
properties. I choose him for two reasons.

(i) His paper is an unusually thorough and perceptive attempt to relate 
vectors and tensors, as they are treated in modern geometry, to the modern 
metaphysics of properties. So it repays detailed scrutiny.

(ii) His paper illustrates the tendency that, as I said at the end of Section 
3.1, I want to reject: the tendency of some contemporary metaphysicians 
to reconcile pointillisme with physical theories’ use of vectorial properties, 
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which seem extrinsic to points, by proposing some heterodox construal of 
the properties in question. Bricker proposes that in order to understand 
space’s or spacetime’s metrical structure as intrinsic, we should appeal to 
non-standard analysis. I will deny this heterodoxy: instead, we can and 
should reject pointillisme.

But before going into the details of Bricker’s discussion, I should regis-
ter that other metaphysicians have also addressed our question; though (so 
far as I know) more briefl y and with less attention to technicalities than 
Bricker. (Besides, they are not all attracted by pointillisme, or by the above 
tendency.)

For example, Robinson maintains that the directionality of a vector for-
bids it from representing an intrinsic property: “direction seems to me an 
inherently relational matter” (1989, p. 408). And he would presumably say 
the same about tensorial properties. (His paper is about the rotating discs 
argument; I discuss its proposals in 2006.) Robinson gives an argument for 
this, using Lewis’ notion of duplicates, i.e. objects that share all their intrin-
sic properties. He also credits Lewis for the argument; so presumably Lewis 
himself thought at the time (ca. 1988) that vectorial properties could not be 
intrinsic. Th e argument combines two intuitions:

(a) It seems that a vectorial property could not be instantiated in a zero-
dimensional world consisting of a single point; though since arbitrarily close 
points defi ne a direction, there is of course no lower limit to the “size“ of a 
world in which a point instantiates a vectorial property.

(b) But it also seems that, since a point in an extended world that instan-
tiates a vectorial property is indeed a point, it could have a duplicate that 
existed on its own, i.e. was the only object in its world.

Taken together, (a) and (b) imply that duplicate points might diff er in 
their vectorial properties; so that any such property is not intrinsic.11

But for anyone who is attracted by pointillisme, and is aware of physical 
theories’ use of vectorial properties, this is a very uncomfortable conclusion. 
Lewis himself is a case in point. Indeed, he seems to have come round to 

11 Other metaphysicians also maintain that vectorial properties are extrinsic to points. 
For example, Black (2000, p.103) holds that vectorial properties can be intrinsic 
only for the special case of vectors on a manifold with a fl at connection; i.e. rough-
ly, a manifold in which there is a unique preferred way to compare vectors located 
at diff erent points. (His discussion is briefer than Robinson’s; since the topic is less 
relevant to his paper’s main aims, than it is to Robinson’s.) And Zimmerman (1998, 
p. 277–278) and Oppy (2000, pp. 79–82) are similarly inclined; though they also 
discuss sympathetically the opposing view.
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believing that vectors can represent intrinsic properties of points, sometime 
between ca. 1988 and ca. 1993. For in a discussion of Humean superveni-
ence (1994, p. 474), he says he is inclined to think that vectorial properties 
are, or at least can be, intrinsic: “any attempt to reconstrue them as relational 
properties seems seriously artifi cial”. But, so far as I know, that is all Lewis 
says by way of defending the idea; (though in his (1999) he used the idea 
to try and reply to the rotating disc argument — unsuccessfully I maintain 
(2006)). In any case, I now turn to Bricker’s extended struggle to avoid the 
uncomfortable conclusion.

4.2 Bricker’s three claims about metrical structure

4.2.1 Bricker’s metaphysical framework

Bricker’s (1993) overall aim is metaphysical understanding of spatial (or 
spatiotemporal) relations. He adopts a metaphysical framework very close 
to Lewis’ — with of course all due acknowledgement (1993, pp. 273–5). Th e 
ingredients we need are: — 

(i) He speaks of possible worlds and perfectly natural properties and re-
lations. He applies mereology freely to points of space and spacetime; (in 
fact, substantivalism about space and spacetime is widespread among ana-
lytic metaphysicians). And so he takes worlds and parts of worlds as possi-

bilia.
(ii) He says that any two possibilia X, Y are duplicates iff  there is a one-to-

one correspondence between their parts that preserves all perfectly natural 
properties and relations. He calls any such correspondence an (X, Y ) counter-

part relation, and corresponding parts are (X, Y )-counterparts of each other. 
(So in this Subsection, ‘counterpart’ is tied to ‘duplicate’ and so will not have 
the usual Lewisian connotations of allowing vagueness and extrinsicness.)

(iii) He says that a property is intrinsic iff  any two duplicates both have it 
or both lack it. (Otherwise the property is extrinsic.) It follows that:

(a)  the class of all possibilia is partitioned by the equivalence relation of 
being duplicates; and

(b) an intrinsic property corresponds to a union of cells of this partition; 
and
(c) all perfectly natural properties are intrinsic.
He extends the notion of intrinsic to relations by saying that a relation is 

intrinsic iff  it is either internal or external in the senses of Lewis (defi ned in 
Section 3.3.2.A); otherwise the relation is extrinsic.
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(iv) He assumes (following Lewis 1986a, pp. 86–92) a principle of re-
combination for spatial or spacetime points. Th is is a principle of modal 
plenitude, inspired by a Humean denial of necessary connections between 
distinct existences: “anything can follow anything”. Stated for spatial points, 
it holds: for any points p and q, perhaps from spaces of diff erent worlds, 
there is a world whose space is a duplicate of the space of p, except that it 
contains a duplicate of q where the duplicate of p would be (1993, p. 290); 
and similarly for spacetime.

I do not endorse this framework. But in discussing Bricker, I will use it 
(and a variant of it considered by him). Th ough it would be a good project to 
ascertain how well Bricker’s arguments fare under a diff erent framework (in 
particular, under weaker assumptions about the intrinsic-extrinsic distinc-
tion), it is not a project for this paper. Here it must suffi  ce to note that if we 
used my distinction between positive extrinsics and the rest, advocated in 
Section 2.1.1, the main points of my critique of Bricker below, would carry 
over intact. But I shall not spell this out point by point, from now on. I just 
note here that:

(a) Since my distinction takes ‘intrinsic’ to mean ‘not positively extrinsic’, 
it yields more intrinsic properties than does Bricker’s (or Lewis’) frame-
work; and so a logically stronger notion of duplicatehood as sharing of all 
intrinsic properties.

(b) Bricker’s argument for the spacetime metric being extrinsic to points 
(Section 4.3) remains valid on my distinction’s construal of ‘extrinsic’ as ‘posi-
tive extrinsic’. For Bricker’s argument implicitly appeals to positive extrinsi-
cality.

(c): My anti-pointilliste reply to Bricker (Section 4.6) is unaff ected by 
adopting my distinction.

Bricker goes on to connect his framework with the Gauss-Riemann con-
ception of distance, as endorsed by general relativity. His discussion includes 
aspects (1993, pp. 275–286) which we can skip, in particular: (a) a comparison 
with two other conceptions of distance (which he dubs the ‘naive’ and ‘intrin-
sic’ conceptions); and (b) a discussion of how the principle of contact-action 
(denial of action-at-a-distance) bears on the the Gauss-Riemann conception. 
Setting these aside, I read Bricker as connecting his metaphysical framework 
with the Gauss-Riemann conception, as follows. He assumes that:

(i) the perfectly natural properties and relations, that are instantiated at a 
possible world that has laws of nature, fi gure in that world’s laws (however 
the notion of a law of nature is to be analysed);
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(ii) general relativity is a logically possible theory, giving the gravitational 
and metrical laws of some possible worlds;

(iii) general relativity can be “formulated locally”; which is taken to im-
ply, as regards metrical structure, formulated in terms of local metrical rela-
tions. Taking these assumptions together, he concludes that the property of 
having such-and-such a local metric tensor is a perfectly natural property, 
and is instantiated at points in general relativistic worlds.

So far, Bricker is in a position like the one we articulated at the end 
of Section 3.3, in which the pointilliste seemed well able to manage local 
metrical structure. Bricker also notes (as we did) that since even topology 
brings in irreducibly global properties of space like being simply connected, 
there can be no sweeping supervenience of the global on the local. So he 
formulates a doctrine he calls Einsteinian supervenience, on analogy with 
Lewis’ Humean supervenience: there is “a manifold of spacetime points 
… and a distribution of perfectly natural local properties (including local 
metrical properties) over those points; all else supervenes on that” (1993,
p. 288).

4.2.2 Bricker’s three claims

Bricker then notices what I called ‘the devil in the details’, i.e. the fact that 
local metrical structure attributes vectorial and tensorial properties to points; 
and he goes on to address the question whether such properties are intrin-
sic, in terms of his metaphysical framework (1993, pp. 288f.). He argues for 
the following three claims (in order, with my added mnemonic labels).

(MetrExtr) Th e metric tensor, as standardly conceived in diff erential ge-
ometry, represents an extrinsic property of a point.

(VetoExtr) Th e obvious (and anti-pointilliste) response to the confl ict 
between this and the metric being perfectly natural — viz. that some but not 
all perfectly natural properties are intrinsic — does not work. For, Bricker 
argues, it clashes with the Humean principle of recombination for space-
time points. Th at is, Bricker rejects this response as engendering necessary 
connections between distinct existences, viz. a point and its surrounding
space.

So Bricker claims we do better to revise our conception of the metric ten-
sor, as follows.

(Heterodox) We should take the metric to represent an intrinsic prop-
erty of an infi nitesimal neighbourhood of a point. Bricker cites Robinson’s 
non-standard analysis as justifying taking such neighbourhoods as genuine 
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mathematical objects, rather than as a facon de parler for calculus’ standard 
notion of limit as “∀∃∀” (e.g. for a real sequence {an}: ∀ ε > 0 ∃N ∀ m, n >
N  | am − an | < ε).

So Bricker’s overall conclusion is radical: that in order to save pointil-

lisme, we should revise the foundations of diff erential geometry. In the next 
three Subsections, I will report his arguments for (MetrExtr) to (Hetero-
dox). Th en in the last Subsection (Section 4.6), I will deny his conclusion. 
Since I hold no brief for pointillisme, I see no reason to pay his price of re-
vising the foundations of diff erential geometry.

4.3 Th e standard metric is extrinsic

Bricker’s argument for (MetrExtr) — the metric tensor, as standardly conceived, 

represents an extrinsic property of a point — is not absolutely precise. But it 
uses more technicalities about local metrical structure than I have intro-
duced so far, in particular diff erential geometry’s idea that the tangent vec-
tors at a point be taken to be directional derivative operators. So I need to 
review this; I shall give rather more detail than Bricker does.

(i) First, the set of spatial or spacetime points is assumed to form a mani-
fold M. Th e defi nition of ‘manifold’ is elaborate, and was only given in its 
modern formal guise in the 1930s — and fortunately I can skip it! It suffi  ces 
to say that the defi nition gives sense to various crucial ideas such as the di-
mension of a manifold, its boundary (if any), its global topological struc-
ture (e.g. being simply connected), the idea of a smooth scalar function i.e. 
a smooth real-valued function defi ned on a subset of the manifold — and 
most important for us, the idea of a smooth curve in the manifold, which 
is taken as a map q from an interval of real numbers I ⊂ R to M. (Here 
‘smooth’ refers to diff erentiability a specifi ed number of times.) As I said in 
Section 3.3, the pointilliste will be hard pressed to account for this manifold 
structure: but I will not labour this point.

(ii) Any curve q thus includes in its defi nition its real-number param-
eter, λ say. So, understanding the tangent vector to the curve at the point
q (t), t ∈ I, in an intuitive way: the tangent vector specifi es a directional de-
rivative of any scalar function f  defi ned on a neighbourhood, N say, of the 
point q(t), f : N ⊂ M → R. (For the direction of the curve at q(t), togeth-
er with the “rate at which λ ticks away”, defi nes an “instantaneous rate of 
change” of f.)

(iii) It is convenient to identify the tangent vector to the curve q at the 
point q(t) with the directional derivative operator acting on the set, R say, 
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of all scalar functions defi ned on some neighbourhood of the point q(t):
d
dλ |q(t) : f ∈ R 6 df

dλ
|q(t) ∈ R.

Why is it convenient? In short: because the directional derivative op-
erators behave just like tangent vectors. For example, for an n-dimensional 
manifold M, the directional derivative operators at any point p ∈ M form 
an n-dimensional vector space, just as one would want the tangent vectors 
to do: think of the 2-dimensional tangent plane at a point p on the surface 
of a sphere. Th is vector space is called the tangent space at p, Tp.

(Other equivalent identifi cations are also used: some presentations iden-
tify a tangent vector at p ∈ M with an equivalence class of curves through 
p — intuitively, curves that are all tangent to each other at p and with param-
eters “ticking” at the same rate.)

(iv): To defi ne the length of a curve requires still further structure: struc-
ture which is not fi xed by the postulation of a manifold, with all its tangent 
vectors V ∈ Tp at each point p. Namely, it requires a metric tensor g, which 
is an assignment to each point in p ∈ M of a mapping from pairs of vectors 
〈U, V 〉 with U, V ∈ Tp  to R: a mapping of a certain sort that generalizes the 
elementary scalar product of vectors. So g : 〈U, V 〉 6 g (〈U, V 〉) ∈ R. Th is 
metric tensor applied to the pair 〈V, V 〉, where V is the tangent vector to a 
curve q passing through p, gives in eff ect the squared length of the “infi ni-
tesimal part” of the curve at p. Now, if we let p vary from one point of the 
curve to another and add up the corresponding contributions, we are per-
forming an integration. So integrating (the square-root of ) g (〈V, V 〉) gives 
the length of the curve. One can prove that (as one would want) the length 
of a curve depends on the metric tensor used, but not on how the curve is 
parameterized.

To connect (i)–(iv) with Bricker’s claim (MetrExtr), one needs some 
“bridge-principles” between the mathematical constructions and philosoph-
ical notions such as that of an intrinsic property. For this, Bricker proceeds as 
follows. He defi nes (1993, p. 289) a property P of points to be local iff  for any 
points p, q, any neighbourhood N of p and any neighbourhood M of q:

if N is a duplicate of M, and p is an (N, M)-counterpart of q, then P holds 
either of both p and q or of neither (i.e. p and q match as regards P).

So, roughly speaking, Bricker calls a property P of points ‘local’ if whether a 
point p possesses P is wholly determined by the intrinsic nature of any ar-
bitrarily small neighbourhood of p. So, modulo the use of metaphysical ideas 
of intrinsic property, duplicatehood etc., this usage clearly corresponds to 
mathematicians’ use of ‘local’ (cf. (iii) in Section 2.1.2).
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It follows that for Bricker any intrinsic property of points is local, since 
counterpart points, being duplicates of each other, share all their intrinsic 
properties. But, Bricker maintains, the converse fails: there are local but ex-
trinsic properties of points. Th ese he dubs neighbourhood-dependent.

He briefl y discusses as examples from elementary calculus, derivatives of 
functions, in particular instantaneous velocity. He says the instantaneous 
velocity of a point-particle at position x at time t, i.e. at a spacetime point 
p, depends on where the particle is at other times; and so is a neighbour-
hood-dependent, but not intrinsic, property of p. Th e ‘so’ here is not spelt 
out precisely, i.e. by justifying the implicit premise about duplicate space-
time regions containing the particle (or its counterpart). But Bricker’s in-
tuition is clear enough: as we emphasised already in Section 2.1.2 and 2.3.2, 
instantaneous velocity and momentum are temporally extrinsic since for ex-
ample they imply the object’s existence at other times. Besides, the intuition 
is shared by others — as we will see when we return to instantaneous velocity 
in the next Section.

Bricker goes on to claim by analogy that in diff erential geometry all the 
tangent vectors at a point p ‘give information not just about p, but about the 
space immediately surrounding p … in short … neighbourhood-dependent 
information about p’. To which he adds: “since the local metric at p is an op-
erator on tangent vectors, it inherits neighbourhood-dependence from its 
operands” (1993, p. 289).

Again, Bricker’s argument here is not entirely precise. He cannot really 
prove that any property represented by an element of tangent space is ex-
trinsic; for his metaphysical apparatus does not tie its notions of perfectly 
natural property, and so duplicate, and so (X, Y )-counterparthood, suffi  -
ciently tightly to the notions of diff erential geometry. A footnote admits 
that (as in my (iii) above), tangent vectors are directional derivative opera-
tors; but again there is no justifi cation for the implicit premise about du-
plicate spacetime regions. But fair enough, I say: his intuition is again both 
clear and shared by others.

And the intuition is enough to deliver Bricker his problem. Th at is: the 
metric’s being neighbourhood-dependent contradicts the previous claim 
that it is perfectly natural (i.e. perfectly natural because mentioned in the 
laws of general relativity) — once we recall that according to his metaphysi-
cal framework, all perfectly natural properties are intrinsic.

In response, Bricker considers two tactics for escape from contradic-
tion: an obvious one which he rejects in the second stage of his argument 
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(Section 4.4); and an unobvious one which he endorses in the last stage
(Section 4.5).

4.4 Vetoing perfectly natural extrinsics

Bricker now argues for:
(VetoExtr): Th e obvious anti-pointilliste response to the contradiction be-

tween the metric being neighbourhood-dependent and perfectly natural — viz. 

that some but not all perfectly natural properties are intrinsic — clashes with the 

Humean principle of recombination for spacetime points. Th at is: it engenders 

necessary connections between a point and its surrounding space.

Bricker fi rst considers saying that some but not all perfectly natural prop-
erties are intrinsic. So the idea is that the perfectly natural but extrinsic 
properties of points include vectorial and tensorial properties, like having a 
metric tensor with such and such features.

Bricker notes that this response implies that his previous defi nition of ‘du-
plicate’ bifurcates into a weaker and a stronger notion. Th e weaker notion is 
that of intrinsic duplicates: this requires only that the one-one correspondence 
between the parts of objects X and Y preserve the intrinsic perfectly natural 
properties and relations. (Recall that Bricker calls a relation ‘intrinsic’ iff  it is 
internal or external in Lewis’ sense, given in Section 3.3.) Th e stronger notion, 
which Bricker calls local duplicates, has the same defi nition, word for word, as 
the previous defi nition of duplicates: X and Y are local duplicates iff  there is a 
one-one correspondence between their parts preserving all perfectly natural 
properties and relations. Bricker proposes that we now defi ne a local prop-
erty as one that never diff ers between local duplicates. So it is now built in to 
the defi nitions that perfectly natural properties are local — just as previously 
it was built in that they were intrinsic. Returning to geometry, the idea will be 
that such perfectly natural, and so local, properties include vectorial and ten-
sorial properties, like having a metric tensor with such and such features.

So far, so good. But there is a clash with Bricker’s Humean principle of 
recombination for points ((iv) of Section 4.2.1): that for any points p and q, 
there is a world whose space is a duplicate of the space of p, except that it 
contains a duplicate of q where the duplicate of p would be. More precisely: 
Bricker says there is a dilemma.

For this principle must now refer either to (A) local duplicates, or to (B) 
intrinsic duplicates: and on either interpretation, Bricker sees trouble. I will 
reply that the second interpretation, (B), is fi ne — provided one is not a poin-

tilliste.
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4.4.1 Trouble with local duplicates

If the principle of recombination refers to local duplicates, then it will yield 
contradictory worlds when p and q have contrary perfectly natural, extrin-
sic (but of course local) properties. Bricker gives as his example positive and 
negative curvature. He writes: “suppose that p is surrounded by positively 
curved space, q by negatively curved space. Th en a world whose space is a 
duplicate of the space of p but with a local duplicate of q in p’s place must be 
both positively and negatively curved in the immediate neighbourhood of 
q” (1993, p. 290; the last phrase of course means ‘immediate neighbourhood 
of the duplicate of q’).

Here I should amplify Bricker’s example — and point out a problem raised 
by it. Given a metric, one can defi ne a scalar function, in the usual math-
ematical sense of ‘scalar’ (viz. a function from the manifold M to R, so that 
its value at a point p ∈ M is the same, independently of any choice of co-
ordinate system), called the scalar curvature R, that has the following re-
markable property: although it is a scalar, at each point p its value R(p) is a 
numerical measure of how curved is the geometry in a neighbourhood of 
p. (In fact a metric is suffi  cient but not necessary to defi ne R: a connection 
also allows one to defi ne scalar curvature.) So Bricker is no doubt here as-
suming that:

(i) p and q have positive and negative scalar curvature, respectively, i.e. 
R(p) > 0 and R(q) < 0; (and if we like, we can take him to assume that all 
points in their respective neighbourhoods have positive and negative scalar 
curvature);

(ii) the scalar curvature R is perfectly natural but extrinsic: (more precise-
ly, it is a determinable whose determinates, given by specifi c values R(.) = 5
etc., are perfectly natural but extrinsic).

Assumption (ii) raises a problem. Hitherto, we have implicitly assumed 
that scalar functions represent intrinsic properties of points: our worries 
have concerned only vectorial and tensorial properties. Now we see there is 
also a gap between:

(a) the mathematical notion of a scalar, which is a matter of how a quan-
tity transforms (viz. trivially: it takes the same value in all coordinate sys-
tems); and

(b) the metaphysical idea of intrinsicness.
Th at is: some scalars can “give information not just about p, but about the 

space immediately surrounding p” — to quote Bricker’s words from his dis-
cussion of tangent vectors (quoted in Section 4.3’s discussion of Bricker’s 
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(MetrExtr)). So Bricker owes us a discussion of how exactly being a sca-
lar, and being intrinsic, relate. But this is not to say that the onus is only on 
Bricker. So far as I know, this is a lacuna in the whole metaphysical litera-
ture. (Cf. comment (a) at the end of Section 2.1.2.)

To sum up: the metaphysical literature assumes that any scalar represents 
an intrinsic property of points, so that the pointilliste need “only“ worry 
whether vectors, tensors etc. do as well. But now we see that pointillistes 

should also worry about scalars such as the scalar curvature.

4.4.2 Alleged trouble with intrinsic duplicates

On the other hand, suppose the principle of recombination refers to intrin-
sic duplicates. Th en contradictory worlds are avoided; but, says Bricker, the 
principle is now too weak to capture the spirit of the Humean denial of nec-
essary connections between distinct existences. For the principle now rules 
out necessary connections between the intrinsic natures of distinct objects. 
But on the present response, an object’s “nature” can include more than its 
intrinsic nature, viz. its perfectly natural extrinsic properties. So, says Brick-
er, the principle’s free combinability of intrinsic natures is not enough to 
prevent unwanted necessary connections.

I reply that this second horn of Bricker’s dilemma has force only for a 
pointilliste. To see the point, let us take an example. Bricker does not give 
one: but he could add to the above example of p and q, as follows. If one 
scalar function, say temperature θ , represents an intrinsic property, while the 
scalar curvature R represents a perfectly natural extrinsic property (and for 
simplicity, there are no other scalar, vector or tensor functions to consider), 
the principle of recombination yields a world that has in p’s place an intrin-
sic duplicate of q — i.e. a point with:

(a) the same temperature θ  that q has (in its world), but
(b) the scalar curvature R that p has (in its world), i.e. a positive value, not 

q’s negative value.
In short, the fact that the neighbourhood of this point is a duplicate of 

p’s neighbourhood forces the duplicate of q going into p’s place to “shed” its 
negative scalar curvature.

I take it that Bricker would see this as an unacceptable un-Humean nec-
essary connection between the point p and its surrounding space. But I 
claim that the wise Humean has no worries here: the necessary connec-
tion merely refl ects the extrinsicality of scalar curvature, so that the value of 
the scalar curvature in the surrounding space can constrain its value in p’s 
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place.12
 Besides, I would say that only someone in the grip of pointillis-

me — an explicit advocate like Lewis, or someone feeling its lure — would 
be uneasy at having fundamental (if you like, in Lewisian terms: perfectly 
natural) quantities that are extrinsic to a point. And so much the worse for 
pointillisme!

But to return to Bricker: he believes that both horns of the dilemma are 
unacceptable — and so his own preference is …

4.5 A heterodox but intrinsic metric

Bricker thinks we should retain his original metaphysical framework, with 
its claim that all perfectly natural properties are intrinsic; and we should es-
cape the contradiction at the end of Section 4.3, by giving up the idea that 
the metric is a perfectly natural property of a point. Th at is, he proposes:

(Heterodox): We should take the metric tensor to represent an intrinsic prop-

erty of an infi nitesimal neighbourhood of a point, taking such neighbourhoods as 

genuine mathematical objects.

More precisely, we should hold that the metric, an extrinsic and not per-
fectly natural property of a point, is “grounded” in another intrinsic, perfect-
ly natural property of a neighbourhood (Bricker’s scare-quotes).

Since Bricker presents this preferred solution briefl y, and I shall object to 
it, it is both clearest and fairest to quote him at length. He writes

To illustrate the sort of grounding I have in mind, consider mass density. 
If one assumes that each neighbourhood of a point has some determinate 
(fi nite) mass and volume, then the mass density at a point can be charac-
terized as the limit of the ratio of mass to volume, as volume shrinks to 
zero. So characterized, mass density is an extrinsic property of points. But 
it is customary in physics, when considering a continuous matter fi eld, to 
instead take mass density to be a primitive scalar fi eld: a function that as-
signs to each point a real number representing (given appropriate units) 

12 A mollifying side-remark: —  On the other hand, I see no worries, even for Bricker 
and other advocates of a principle of recombination, lurking in the fact that laws 
typically require the values of quantities, including scalar intrinsic quantities (such 
as temperature in my example), to be continuous, or even diff erentiable a specifi ed 
number of times. For the principle says only that a world given by recombination is 
logically possible — not that it obeys the laws of either of the worlds of the “recom-
bined ingredients”.
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the intrinsic mass density at the point. Given intrinsic mass density, and an 
assumption about its smooth distribution, mass can be defi ned by integra-
tion. Extrinsic mass density thus supervenes upon intrinsic mass density. 
And, thanks to a fundamental theorem of integral calculus, the values of 

extrinsic and intrinsic mass density coincide …. Th e suggestion, then, is to 
say something analogous about the local metric: the extrinsic local metric 
supervenes on an intrinsic local metric (plus manifold structure).(1993, p. 
290–1.)

But, he then says, there is a problem.

How can a tensor be intrinsic to a point? Points are spatially simple. Ten-
sors, being operators on vector spaces, are spatially complex. It is repug-
nant to the nature of a point to suppose that a local metric, which is a 
tensor, could be intrinsic to a point … [the intrinsic local metric] had bet-
ter be intrinsic not to a point, but to something spatially complex. (1993, 
p. 291.; with a footnote endorsing Robinson’s argument which I reported 
in Section 4.1, that vectorial properties must be extrinsic to a point.)

He immediately goes on

No sooner said than done. If we are willing to postulate perfectly natural 
properties on theoretical grounds, we should be willing to posit appropriate 
entities to instantiate those properties: in this case, entities that are spatially 
complex. I propose that we reify talk of the “infi nitesimal neighbourhood” 
of a point. Th e tangent space at a point is now conceived as the infi nitesi-
mal neighbourhood of the point “blown large” … it no longer depends for 
its existence on the manifold structure. Tensor quantities are intrinsic … 
to the infi nitesimal neighbourhoods of points. … space (or spacetime) has 
a “non-standard” structure. Th ere are “standard” points, and there are “non-
standard” points that lie an infi nitesimal distance from standard points. 
Th e points along a path in space are ordered like the nonstandard contin-
uum of Abraham Robinson’s non-standard analysis (ibid.)

4.6 Anti-pointilliste reply

My reply is clear from what I said in Section 4.4.2. Namely, I think Brick-
er’s principle of recombination is a poor reason for proposing non-standard 
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analysis. Th ough of course non-standard analysis is impressive and fascinat-
ing, the fact that vectorial and tensorial properties are extrinsic to a point 
gives no good reason to adopt non-standard analysis as a metaphysical foun-
dation for diff erential geometry: only pointillisme makes one think so.

Th e errors of pointillisme also show up in what Bricker says about his mo-
tivating example, mass density; in particular, his saying “it is customary in 
physics, when considering a continuous matter fi eld, to instead take mass 
density to be a primitive scalar fi eld”.

I reply that this is a mistake. Th at is: the classical mechanics of continua 
(whether fl uids or deformable solids) conceives mass density exclusively as a 
limit of a ratio of mass to volume, and so as extrinsic — in just the way Brick-
er says at the start of the fi rst quotation. And it is right to do so. For use of a 
primitive mass density scalar fi eld leads to conceptual conundrums. (Agreed, 
under suitable conditions of smoothness, such a fi eld meshes as regards the 
mathematics with the usual defi nition as a limit — as Bricker mentions.)

As a very simple example of such a conundrum, imagine that the unit 
square [0, 1]2

 ⊂ R2
 is a sheet of continuous material, with a uniform mass 

density ρ (x, y) = 1 (so that the total mass is also 1). Now suppose the mate-
rial is expanded to four times its original area, by a uniform stretch, so as to 
cover the set [0, 2]2. Th at is, there is a stretching function f :

f : (x, y) ∈ [0, 1]2 6 (2x, 2y) ∈ [0, 2]2

Th e conservation of mass requires that after the expansion ρ (x, y) = 0,25 for 
all (x, y). But if as Bricker suggests, the mass density ρ  is primitive, it is nat-
ural to ask: how does the point-sized bit of matter at a point (x, y) “know” 
how to decrease its value of ρ  between the initial and fi nal times, say t0 and 
t1: ρ (x, y; t1) = 14 ρ (x, y; t0)? After all, each point is mapped by f to just one 
point, not to four points!

On the other hand, there is no such conundrum (in this example, or count-
less others) if we fi rst state the conservation of mass in terms of extended 
regions, and then treat mass density as a derived concept.

In fact, we have here come full circle: we have returned to Section 3.3.2’s 
paradox of the length of a line, which launched our discussion of whether 
pointillisme can accommodate the structure of space or spacetime. For rigor-
ous presentations of continuum mechanics (e.g. Truesdell 1991, pp. 16–19, 
92–94) treat mass and mass density in exactly this way. Th at is: they pos-
tulate a mass measure that assigns values of mass to (an appropriate subset 

(4.1)
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(4.4)

of all) spatial regions. Mass density is then introduced as a derived concept 
(essentially the limit of the ratio of mass to volume, as mentioned above), 
subject to certain conditions that ensure that its integral yields back the 
original mass-measure for regions. Th e full details of this treatment require 
modern measure theory: (for example, the conditions for the density’s in-
tegral to equal the original measure are given essentially by the Radon-
Nikodym theorem; for details, cf. e.g. Kingman and Taylor (1977, Th eorem 
6.7)).

But I do not need to rehearse these details: here it is enough to give a 
non-rigorous statement of how this treatment, applied to the unit square 
example, avoids the conundrum of how ρ  can “know” how to decrease.13

In this example, we postulate that all regions R of a suitable kind K are 
assigned a mass m(R, t) at a time t, which is conserved under the stretching 
in the sense that 

∀R ∈  K,   m(R, t0) = m( f (R), t1).

We also postulate that each region R is assigned an area a(R); and that the 
kind K is rich enough in the sense that for each point (x, y), there is a se-
quence of regions {Rn} which all contain (x, y) but whose areas descend to 
0 — which we write as Rn  → (x, y). Th en we defi ne the mass density at (x, y) 
as the corresponding limit of the ratio of mass to area: we assume here that 
this limit exists, for all (x, y). Th at is:

ρ (x, y; t) := limRn → (x, y) 
m R t
a R
( , )
( )

.

Th e conservation of mass, represented fundamentally by eq. 4.2, can then be 
re-expressed in terms of the integral of the density

 ρ ( , ; )x y t
R 0∫ dxdy = ρ ( , ; )

( )
x y t

f R 1∫ dxdy

And from this, it follows that ρ  must decrease uniformly by a factor of 4: i.e. 
ρ (x, y; t0) =4ρ (x, y; t1). Th at is “how ρ  knows” how to decrease!14

13 I also admit that (as mentioned in Section 1 and 3.3.2) measure theory has some 
well-nigh paradoxical results of its own. But neither swallowing those results, nor 
avoiding them by revising measure theory, gives any support to pointillisme.

14 Of course, conundrums like this about the unit square can be formulated not only 
about mass and mass density, but about arbitrary measures and their densities. And 

(4.2)

(4.3)
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