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Symbolic logic is a marvelous thing. It allows for an explicit expression of 
existence, viz. by means of the existential quantifier, and by it only. This is 
the true gist in Quine’s slogan “to be is to be a value of a bound variable.” 
Accordingly, one can also formulate explicitly the thesis of nominalism in 
terms of such logic. What this thesis says is that all the values of existential 
quantifiers we need in our language are particular objects, not higher-order 
objects such as properties, relations, functions and sets.  

This requirement is satisfied by the first-order languages using the 
received first-order logic. The commonly used basic logic is therefore 
nominalistic. But this result does not tell anything, for the received first-
order logic is far too weak to capture all we need in mathematics or sci-
ence. According to conventional wisdom, we need for this purpose either 
higher-order logic or set theory. Now both of them deal with higher-order 
entities and hence violate the canons of nominalism. This does not refute 
nominalism, however. For I will show that both set theory and higher-order 
logic can be made dispensable by developing a more powerful first-order 
logic that can do the same job as they do. 

Moreover, there are very serious problems connected with both of 
them. This constitutes an additional reason for dispensing with them in the 
foundations of mathematics. I will show how we can do just that. But we 
obviously need a better first-order logic for the purpose. Hence my first 
task is to develop one. 
 But is this a viable construal of the problem of nominalism? The very 
distinction between particular and higher-order entities might perhaps seem 
to be hard to capture in logical terms – harder than has been indicated so 
far. Logicians like Jouko Väänänen (2001) have emphasized the complexi-
ties involved in trying to distinguish first-order logic from higher-order 
logic. The first step of an answer is that the distinction cannot be made 
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purely formally but has to depend on the interpretation of one’s logic, in 
particular on the specification of the values of bound variables. 

But how does such an interpretation come about? This question 
should be generalized. How does a mathematical or scientific theory for-
mulated in a logically explicit language work? The answer is obvious: By 
specifying a class of models. These models are the structures that the the-
ory studies. In those models, the values of first-order quantifiers are par-
ticular objects (individuals) while the values of higher-order quantifiers are 
higher-order entities, such as sets, functions, predicates, relations etc. 

But now the usual axiomatizations of set theory seem to belie the dis-
tinction. Such axiomatizations use the nominalistic first-order logic even 
though they are supposed to deal with sets, which are higher-order entities, 
albeit seemingly more concrete than properties and relations. The answer, 
which will be expounded more fully elsewhere, is that this is precisely 
what is wrong with first-order axiomatizations of set theory. (See here Hin-
tikka, forthcoming (a) and (b).) They simply represent a wrong approach to 
set theory. They are based on a serious misunderstanding as to how an 
axiomatic theory works. Their models are structures of particulars, not 
structures of sets. Hence it is extremely difficult to try to extract informa-
tion about structures of sets from a first-order axiomatization of set theory. 
Indeed, it can be explicitly proved that there cannot exist a set theory using 
the received first-order logic whose variables range over all sets. 
 Moreover, it is an important strategic defect of the usual axiomatic 
set theories that their logic is the usual first-order logic. For because of 
their reliance on conventional first-order logic it is impossible to define the 
concept of truth for such a set theory by means of its own resources. As a 
consequence one cannot discuss the model theory of set theory in set the-
ory itself. This is a tremendous limitation foreshadowed in the so-called 
semantical paradoxes of set theory of yore. In this light, it is only to be ex-
pected that important questions concerning set-theoretical structures cannot 
be answered in the usual set theories. For instance the results by Cohen and 
Gödel concerning the unsolvability of the continuum problem on the basis 
of Zermelo-Fraenkel set theory thus only serve to confirm the reality of the 
predicted limitations.  
 Another mixed case seems to be obtainable by considering the 
higher-order logic known as type theory as a many-sorted first-order the-
ory, each different type serving as one of the “sorts”. One can try to inter-
pret the logics of Frege and of Russell and Whitehead in this way. The at-
tempt fails (systematically if not historically) because there are higher-
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order logical principles that cannot be captured in terms of the usual for-
mulations of many-sorted first-order logic. An important case is the so-
called axiom of choice. (But see below how the axiom of choice can be-
come a truth of a reformulated first-order logic). This example from set 
theory in fact reveals the crucial watershed between first-order logic and 
higher-order logic. It is not the style of variables, which only means pre-
tending that one is dealing with this or that kind of entity, that is, first-order 
(particular) objects or higher-order ones. The crucial question is whether 
principles of inference are involved that go (or do not go) beyond the logi-
cal principles of first-order (nominalistic) logic. 
 These are vital problems to any serious thinker who tries to under-
stand all mathematical reasoning nominalistically. A case in point is Hil-
bert. (See Hilbert (1918) and (1922).) Indeed, it is his nominalism that is 
largely responsible for Hilbert’s having been labelled a “formalist”. He 
wanted to interpret all mathematical thinking as dealing with structures of 
particular concrete objects. Now for mathematicians’ deductions of theo-
rems from axioms the interpretation of nonlogical primitives does not mat-
ter. In other words it does not matter what these objects are as long as they 
are particulars forming the right kind of structure. In this sense Hilbert 
could say that for the logical structure of his axiomatization of geometry he 
could have named his primitives “table”, “chair” and “beer mug” instead of 
“line”, “point” and “circle”. One could not carry out such a reformulation 
of axioms and deductions from them if the values of a geometer’s variables 
were entities which already have a structure like e.g. sets. A deduction is 
invariant with respect to a permutation of individuals but not of structures 
of individuals. One cannot hope to exchange the terms “triangle” and 
“quadrangle” in a geometrical proof and expect it to remain valid. Because 
of this invariance, Hilbert could say that the concrete particular objects in 
one of the models of his theory could be thought of as symbols and formu-
las. To use his own vivid language, Hilbert could have said that he could 
have named his geometrical primitives “letter”, “word” and “formula”, 
quite with the same justification as the envisaged terms “chair”, “table” 
and “beer mug”. This gambit was in fact put to use later as a technical re-
source by logicians, among them Henkin (1949) and Hintikka (1955) in 
building up the models they used to prove the completeness of the received 
first-order logic. It is thus a radical misunderstanding to label Hilbert a 
formalist 
 Hilbert blamed all the problems in the foundations of mathematics on 
the use of higher-order concepts. And he tried to practice nominalism and 
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not only profess it. He tried to show the dispensability of higher-order as-
sumptions in mathematics. His test case was the controversial axiom of 
choice. Hilbert (1922) expressed the belief that in a proper perspective this 
“axiom” could turn out to be as obvious as 2+2=4. Hilbert tried to accom-
plish this reduction to first-order level by replacing quantifiers by certain 
choice terms, so-called epsilon terms. These epsilon-terms are expressions 
of certain choice functions. Hilbert’s mistake was not to spell out what the 
choices in question depend on and thereby in effect ruling out some rele-
vant kinds of dependence. 
 Hilbert did not succeed even though he was on the right track. There 
is in fact a far simpler way of showing that the axiom of choice can be un-
derstood as a first-order logical principle. All we need for the purpose is a 
slightly more flexible formulation of the usual first-order logic. One of its 
usual rules is existential instantiation that allow us to replace a variable x 
bound to a sentence-initial existential quantifier in a sentence (∃x)F[x] by a 
new individual constant, say β, at the same time as we omit the quantifier 
itself. This β can be thought of as a sample (some writers say “arbitrarily 
chosen”) representative of the truth making values of x. Hence such a β is 
like the legalese pseudo-names “John Doe” and “Jane Roe” representing 
existing but unknown individuals. 

This rule cannot be applied to an existential quantifier (∃y) inside a 
formula, because the choice (sic) depends on the values of the universal 
quantifiers (∀z1),(∀z2),… within the scope (∃y) occurs (assuming that the 
formula is in the negation normal form). But the rule of existential instan-
tiation becomes applicable when we allow the substituting term to be a 
function term β(z1, z2,…) which takes into account the dependencies in 
question. However, what is now introduced is not an individual constant, 
but a new function constant. 
 This reformulation of first-order logic is totally natural, and can be 
seen as following directly from certain eminently obvious truth-conditions 
of first-order (quantificational) sentences. The most obvious truth-condi-
tion for a first-order sentence S is the existence of suitable “witness indi-
viduals” that together show the truth of S. Thus for instance (∃x)F[x] is true 
iff there is an individual a that satisfies F[a] and (∀x)(∃y)G[x,y] is true iff 
for any given a there exists an individual b that satisfies G[a,b]. As this ex-
ample shows, witness individuals may depend on other individuals. Hence 
their existence amounts to the existence of the functions (including con-
stant functions) that yield as their values suitable witness individuals. 
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These functions are known as the Skolem functions of S. The functions β 
mentioned earlier are merely examples of “John Doe” Skolem functions. 
 This rule is a first-order one, for no higher-order quantifiers are in-
volved. It seems to effect merely an eminently natural and eminently obvi-
ous reformulation of the rules of first-order logic. But when this reformu-
lated first-order logic is used as the basis of second-order logic or set the-
ory, the axiom of choice becomes a truth of logic without any further as-
sumptions. 
 This result may at first seem too elementary to be of much interest. 
In reality, it puts the very idea of axiomatic set theory into jeopardy. In a 
historical perspective, Zermelo axiomatized set theory in the first place in 
order to defend his use of the axiom of choice in his proof of the well-
ordering theorem. (See Zermelo 1908 (a) and (b), Ebbinghaus 2007.) We 
can now see that his axiomatizing efforts were redundant. Zermelo could 
have vindicated the axiom of choice by showing that it is a purely logical 
principle. First-order axiomatic set theory was right from the outset but lo-
gicians’ labor lost.  
 I am intrigued by the question why this exceedingly simply way of 
vindicating the status of the axiom of choice as a logical principle has not 
been used before. I suspect that the answer is even more intriguing. The 
new rule of functional instantiation is context sensitive, and hence makes 
first-order logic noncompositional. Now compositionality seems to have 
been an unspoken and sometimes even overt article of faith among logi-
cians. It was what prevented Tarski from formulating a truth definition for 
a first-order language in the same language, as is shown in Hintikka and 
Sandu (1999). It might also be at the bottom of Zermelo’s unfortunate con-
strual of the axiom of choice as a non-logical, mathematical assumption.  
 Systematically speaking, and even more importantly, the version of 
the axiom of choice that results from our reformulation is extremely strong. 
It is so strong that it is inconsistent with all the usual first-order axiom sys-
tem of set theory. For instance, in a von Neumann-Bernays type set theory 
(Bernays 1968) it applies also to all classes and not only to sets. Accord-
ingly, first-order set theories turn out to be inconsistent with (suitably for-
mulated) first-order logic. This already shows that something is rotten in 
the state of first-order set theories. 
 But the axiom of choice is only the tip of the iceberg of problems 
(and opportunities) here. Earlier, I promised to develop a better first-order 
logic in order to defend nominalism. It turns out that we have to develop 
one in any case. The most fundamental insight here is that the received 
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first-order logic (logic of quantifiers) does not completely fulfill its job de-
scription. The semantical job of quantifiers is not exhausted by their ex-
pressing the nonemptyness and the exceptionlessness of (usually complex) 
predicates. But in the reconstructed axiom of choice another aspect of the 
meaning of quantifiers comes to play. By their formal dependence on each 
other, quantifiers also express the real-life dependence of the variables on 
each other that are bound to them. Such dependence is precisely what Sko-
lem functions codify.  
 The formal dependence of a quantifier (Q2y) on another quantifier 
(Q1x) is in the received logic expressed by the fact that (Q2y) occurs in the 
syntactical scope of (Q1x). But this scope (nesting) relation is of a special 
sort, being among other features transitive and antisymmetric. Hence the 
received first-order logic cannot express all patterns of dependence and in-
dependence between variables. Since such dependence relations are the 
bread and butter of all science, this is a severe limitation of the received 
logic.  
 This defect is corrected in the independence-friendly (IF) logic that I 
have developed together with associates. (For it, see Hintikka 1996.) Its 
semantics is completely classical and can be obtained from the usual game-
theoretical semantics simply by allowing our semantical games to be 
games with incomplete information. 
 The resulting logic is deductively weaker than the received first-
order logic but richer in important ways in its expressive capacities. For 
instance, the equicardinality of two sets can be expressed by its means. In-
cidentally, this would have made it possible for Frege to define number on 
the first-order level, thus depriving him of one reason to use higher-order 
logic (as he does).  
 Because IF logic merely corrects a defect in the received “classical” 
first-order logic and because its semantics does not involve any new ideas 
(except independence, of course), it is not an alternative to the received 
first-order logic. It is not a special “nonclassical” logic or “alternative” 
logic. It is an improved version of the basic first-order logic. It replaces our 
usual logic.  
 In IF logic, the law of excluded middle does not hold, in spite of the 
classical character of its semantics. In other words, the negation ~ in it is 
not the contradictory negation but a strong (dual) negation. 
 An interesting feature of IF first-order logic is that its implications 
differ from those of the received first-order logic also when it comes to fi-
nite models. Since we have to replace the latter by the former, we must 
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also reconsider all finitary metamathematics and its prospects, including 
Hilbert’s. This means that Hilbert’s project has to be re-evaluated. It is no 
longer clear that Gödel’s second incompleteness implies the impossibility 
of Hilbert’s program. Indeed, there already exists an elementary proof of 
the consistency of an IF logic based elementary arithmetic in the same 
arithmetic. (See Hintikka and Karakadilar 2006.) 
 I will later show that IF first-order logic is as strong as the ∑ 1

1 frag-
ment of second-order logic (to be defined below). In simpler terms, sec-
ond-order existential quantifiers are expressible in IF first-order logic. 
 This has major implications for the theme of this meeting which in-
cludes reduction. Reductions between theories are often implemented by 
mappings of the models of the reduced theory into the reduct theory. The 
existence of such a mapping is an existential second-order statement. If the 
theories in question are formulated by means of IF first-order logic, such 
reductions can be discussed in the same terms as theories themselves, 
which is impossible to do if the conventional first-order logic is used in-
stead. What this means is that IF logic typically enables us to turn what 
used to be thought of as a metatheoretical examination of reductions into 
(object-language) scientific questions. Such algebras were studied already 
in Jónsson and Tarski (1951) and (1952). 
 IF logic can be extended unproblematically by introducing a sen-
tence-initial contradictory negation ¬. The result can be called extended IF 
logic or EIF logic. This logic is the true new basic logic. Algebraically it is 
a Boolean algebra with an additional operator ¬~. 
 The contradictory negation ¬S of S says that such winning strategies 
do not exist. Since semantical games are not all determinate, S may fail to 
be true and yet not necessarily be false. Thus ¬S means game theoretically 
that for any strategy of the verifier there exists a strategy for the falsifier 
that defeats it if known to the falsifier. This can be expressed by a Π 1

2  sec-
ond-order sentence. 
 One of the main advantages of IF logic is that it makes it possible to 
define truth for a sufficiently rich IF first-order theory in the same theory, 
thus overcoming the main handicap of conventional set theories. In terms 
of game-theoretical semantics, the truth-condition for a sentence S will say 
that there exists a winning strategy for the verifier in the semantical “veri-
fication” game G(S) connected with S. This is a second-order condition, 
but it will be shown to reduce back to IF first-order logic. Technically, 
such winning strategies are codified in the Skolem functions explained ear-
lier. Hence S is true if and only if its Skolem functions all exist. This can 
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be expressed by a second-order sentence with a string of second-order exis-
tential quantifiers followed by a first-order formula, i.e. by what is known 
as a Σ 1

1  sentence. They turn out to have IF first-order equivalents, as will be 
seen later in this paper. 
 Our new basic logic, the EIF first-order logic, is in many ways a 
highly interesting structure. It does not rely on the law of excluded middle 
and hence can be considered a realization of intuitionists’ intuitions. In-
deed, its systematic motivation makes it a more natural “intuitionistic 
logic” than the formal systems so-called. In spite of this essential kinship, 
it allows for much of the usual mathematics, including analysis. For in-
stance, the unrestricted axiom of choice is valid in it. Precisely how much 
analysis can be handled by its means, is an important largely open problem 
to be investigated. This question means asking how much of analysis can 
be done by unproblematic elementary means. 
 EIF logic can be extended further by allowing ¬ to occur also within 
the scope of quantifiers. The result can be called a fully extended IF logic 
(FEIF logic). This does not mean leaving the first-order level but requires 
further explanations (to be supplied later) for its semantics. It incorporates 
both the received first-order logic and IF logic as subsystems.  
 A clarifying comment is in order here. What precisely is the relation 
of the received first-order (RFO) logic to IF first-order logic, EIFFO logic 
and FEIFFO logic? The answer is that as long as tertium non datur holds, 
RFO logic and IFFO logic are analogous. RFO logic is the logic of those 
formulas for which the law of excluded middle holds. It is in this sense a 
part of IFFO logic. It is also that part of EIF logic whose formulas do not 
contain independence indicators (slashes) and for whose atomic sentences 
obey the law of excluded middle. 
  This FEIF logic can now serve the purpose of the reduction fore-
shadowed in my title. FEIF logic can be shown to be as strong as the entire 
second-order logic. And even though I have been speaking of higher-order 
logic, the fact is that second-order logic is strong enough to capture all the 
modes of reasoning used in mathematics and in science. In this sense, sec-
ond-order logic is the true Begriffsschrift in Frege’s ambitious terminology. 
 Second-order logic formulas are divided into fragments according to 
the number of changes of sign in their prenex form. Thus the ∑ o

o  = Π o
o 

fragment consists of first-order formulas, ∑ 1
1 of formulas with a string of 

existential second-order quantifiers followed by a ∑ o
o  formula, and the Π1

1 
fragment consists of contradictory negations of ∑ 1

1  formulas. In general, 
the ∑ 1

1+n  fragment consists of a string of existential quantifiers of the order 
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n+1 followed by a formula in the Π 1
n  fragment. The Π 1

n  fragment consists 
of the contradictory negations of ∑1

n  formulas. 
 The second-order logic that I propose to reduce to the first-order 
level is to be understood as the received “classical” second order logic. (It 
is this logic that is generally recognized as a sufficient medium of all nor-
mal mathematical reasoning.) That means that no independence indicator 
slashes occur in them. Consequently, the law of excluded middle holds. All 
sentences can be assumed in the negation normal form. 
 The reduction can be introduced by means of an example. Consider a 
∑ 1

1 sentence of the simple form (∃f ) G[f ]  where G[f ]  is a first order for-
mula in its prenex form. Since G[f ]  can be assumed to be an IF first-order 
formula, its prenex form can be assumed to begin with a string of universal 
quantifiers. In the simplest case, there is only one of them, say (∀x). 
 Let us assume also that f does not appear nested in (1). That means 
that it occurs in F only in contexts like A(f(x)) or f(x) = a. Hence (1) is of 
the form  
 

(1) (∃f (∀x)F[x,f(x)] 
 
 Now (1) is easily seen to be equivalent with the following formula 
 

(2) (∀x1)(∀x2)(∃y1/∀x2)(∃y2/∀x1) & ((x1 = x2) ⊃ (y1 = y2) & F*) 
 
Here F* is like F except that A(f(x)) has been replaced by (∀w)(w = y1 ⊃ 
A(w)) and f(x) = a by (∀w)(w ⊃ y1 ⊃ w = a). 
 This equivalence can be shown to hold as follows: The Skolem func-
tion translation into second-order form is 
 

(3) (∃f1)(∃f2)(∀x1)(∀x2)((x1 = x2) ⊃ (f1(x1) = f2(x2)) & F**  
 
where F** is like F* except that f2(x2) replaces y2. Now the first conjunct 
in (3) says that f1 and f2 are the same function. Hence (3) and (2) are equi-
valent to (1). 
 This elimination is obviously repeatable so as to be extendable to any 
number of initial universal quantifiers in the prenex form of F and to any 
number of initial existential quantifiers (∃f1)(∃f2),… instead of the single 
one (∃f ) . 
 If there is nesting of the functions f1, f2,… in F, it can be eliminated 
by introducing new functions fi and new universal quantifiers (∀xi). For 
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instance, if in F there occurs a term fi(f2(x)), we can add a new initial exis-
tential quantifier (∃g) and add after the prenex of F the conjunct  
 

(4) (∀z)(∀u)((g(z) = u) ↔ (∃w)(w = f2(u) & z =f1(w)) 
 
  This procedure can be generalized. We can in fact easily replace 
predicate variables in the initial formula by variables for their characteristic 
functions. This extends the procedure so as to eliminate any formula-initial 
second-order existential quantifier albeit at the cost of introducing inde-
pendence indicators (slashes). Moreover, this elimination can be applied to 
any unnegated existential quantifier in context, not just initial ones. 

As to universal second-order quantifiers and negated second-order 
existential quantifiers, it suffices to point out that a universal second-order 
quantifier (∀f )  prefixing a subformula (∀f ) F[ f ]  can be replaced by ¬(∃f )  
¬F( f ) . We can now eliminate (∃f )  from the subformula (∃f )¬F[ f ]  in the 
way just indicated. The result does not contain second-order quantifiers (if 
we apply the reduction from inside out) but does normally contain contra-
dictory negations ¬. It is therefore a FEIF logic (sub) formula. 

When these eliminations are carried out step by step in a given sec-
ond-order formula, moving from inside out, all the second-order quantifi-
ers are ultimately eliminated. The procedure does introduce independence 
indicators and contradictory negations, which is to say that the result is a 
FEIF formula, but does not introduce any second-order quantifiers. This 
accomplishes the reduction of the entire traditional second-order logic to 
the first-order level. The reduct sentence is a first-order sentence: all its 
quantifiers range over first-order entities. However, it does contain contra-
dictory negations also within the scope of quantifiers. The additional 
power of second-order logic is therefore due, not to its being second-order, 
but to its unlimited use of contradictory negation. This means essentially 
unlimited use of tertium non datur. In a sense, this vindicates Brouwer’s 
idea that the excessive power of classical mathematics stems from the use 
of the principle of excluded middle. 

The same reduction can apparently be used to translate logic of the 
order n+1 to the order n and hence ultimately to the first-order level. This 
possibility will not be discussed here, however. 

This procedure reduces the traditional second-order to the logic of 
the first-order level. However, what remains to be explained is the seman-
tics of FEIF logic. This semantics can be formulated in different ways. One 
transparent one is to use infinite methods. This means replacing in effect a 
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quantified formula in the scope of ¬ by a conjunction or disjunction of its 
substitution instances with respect to the names of all the members of the 
given domain. These will be infinite if the domain is infinite.  

For instance, ¬(∀x)A[x] is true iff the disjunction 
 

(5) ¬A[b1] ∨ ¬A[b2] ∨ … 
 
is true, bi being all the members of the domain. This suffices for the seman-
tics in question.  
 This way of formulating a truth condition for second-order sentences 
helps to show in what sense the step from EIF logic to a logic based on un-
limited use of tertium non datur means a step from elementary logic to a 
nonfinitistic logic. 
 However, we might want to have an explicit truth condition specified 
independently of any particular domain. Such a truth condition can be for-
mulated by means of FEIF logic itself. In IF logic a natural truth condition 
asserts the existence of Skolem functions for S. This truth condition is ob-
tained by replacing each existentially quantified formula (∃x)F[x] by 
F[ f ( y1,y2,…)] where f is a new (Skolem) function bound to an initial (∃f )  
and (Qy1)(Qy2),… are all the quantifiers on which (∃x) depends in S. We 
can do the same when S is a FEIF sentence, except for subformulas of the 
form ¬F. Here the analysis of the truth-condition of a contradictorily ne-
gated sentence presented earlier in this essay shows what can be done. 
There it was seen that ¬F is equivalent to a Σ 1

2  formula. Hence a subfor-
mula of the form ¬F can in a truth condition be replaced by a formula of 
the following form:  
 

(6) (∀g1)(∀g2)…(∃f1)(∃f2)…¬F* 
 
where g1, g2,… are the Skolem functions for F (i.e. strategy functions for 
the verifier) and f1, f2,… are the analogous strategy functions for the falsi-
fier. The nesting of these functions is determined by the dependence rela-
tions between the different quantifiers in F. F* is the result of replacing 
quantified variables by the appropriate function terms. The output is 
equivalent to an ordinary second-order sentence (assuming that atomic sen-
tences obey the law of excluded middle). This output will have to satisfy 
certain conditions. The functions g1, g2,…, f1, f2,… in (5) can have as their 
arguments only functions terms formed by means of these functions and 
the first function g1 which is always a constant function. What this means 
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is that the quantifiers in ¬F are independent of all the quantifiers further 
outside. In linguistic terms this very nearly says that contradictory negation 
is a barrier for anaphora – a phenomenon that is in evidence in natural lan-
guages. This procedure eventually moves all occurrences of ¬ to positions 
where they have only atomic sentences within their scope and where they 
can be interpreted trivially. Thus the procedure can be thought of as speci-
fying the meaning of ¬. 
 Thus for instance a (sub) formula of the form 
 

(7) ¬(∃x)(∀y)(∃z)F[x,y,z] 
 
will be replaced in our reduction by a formula of the form  
 

(8) (∀f1)(∀f2)(∃g)¬F( f 1,g( f 1),f2( f 1,g( f 1))]  
 
(In this case the function f1 is reduced to a constant.) 

By repeated applications of this procedure, moving from outside in, 
we can formulate a second-order truth condition for each FEIF sentence. In 
the reduct, all contradictory negations ¬ occur in the negation prenexes of 
atomic formulas. Hence by the earlier reduction it is equivalent to a FEIF 
sentence. The functions g1, g2,…, f1, f2,… deputize quantifiers in ¬F. These 
quantifiers in turn codify moves made by players in the game G(¬F) con-
nected with ¬F. Hence, only variables occurring in the arguments of these 
functions can be variables bound to other quantifiers in ¬F.  

In other words, by translating this second-order formula back to 
FEIF first-order logic we obtain for suitable FEIF languages a truth condi-
tion expressible in the same language. 

Putting all this together, we can prove strictly the possibility of nomi-
nalism in the foundations of mathematics. This result is not only of philo-
sophical interest. It has major implications for the foundations of mathe-
matics in general and even for mathematics itself. First-order axiomatic set 
theory becomes redundant and so does in principle higher-order logic, ex-
cept perhaps as a convenient shorthand. Our working logic will look more 
like general topology than conventional first-order logic or conventional 
set theory. I will leave the rest of the resulting revolution to my audience to 
carry out. 
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