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1. INTRODUCTION 
 
1.1 Ramsey Sentences 
 
This paper returns to the topic of Ketland 2004, which aimed to clarify the 
Newman objection to scientific structuralism. Several ways of formulating 
the propositional knowledge claims associated with scientific structuralism 
involve the appearance of a Ramsey sentence, in one form or another. 
Some structuralists “ramsify” the linguistic formulations of theories explic-
itly (e.g., Zahar 2001, Appendix), while others “ramsify” in a less obvious 
manner (e.g., the content of any “structural representation claim” seems to 
be a Ramsey sentence). However, there is a problem. In a 1928 review of 
Russell’s structuralism, M.H.A. Newman pointed out that these “structural 
representation claims” reduce to cardinality claims. In 1985, Demopoulos 
and Friedman applied this criticism to argue that the truth of a theory’s 
Ramsey sentence is equivalent to the theory’s empirical adequacy plus a 
condition on the cardinality of the world. In particular, the “structural con-
tent” of a theory reduces to cardinality content. In Ketland 2004, the main 
result obtained was that a Ramsey sentence ℜ(Θ) is true just if the theory 
Θ has an empirically correct full model with sufficiently many objects. 
Thus, not much more than empirical adequacy is required for ℜ(Θ) to be 
true: so, structuralism collapses to anti-realism (cf., van Fraassen’s con-
structive empiricism).  

The notion of a Ramsey sentence first appears in Frank Ramsey’s 
“Theories” (1929), discussing the role of theoretical predicates (observa-
tional predicates are supposed, via a “dictionary” or “correspondence 
rules”, to “interpret” the theoretical predicates). Consider a statement of the 
form Θ(T1,…, Tn), with predicates T1,…, Tn occurring in Θ. The corre-
sponding Ramsey sentence has the form: 
 

(1) There are relations R1,…, Rn such that Θ(R1,…, Rn). 
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Syntactically, the Ramsey sentence replaces the predicates Ti with second-
order variables Ri, and then prefixes the result with existential quantifiers 
for those variables. We say that the Ti have been “ramsified”.1 In effect, (1) 
expresses that the condition Θ is satisfiable. More generally, a Ramsey 
sentence has the form: 
 

(2) There are relations R1, …, Rn on domain D such that 
Θ(D, R1, …, Rn). 

 
 Example 1. Consider Max Born. The following is true: 
 

(3) Max Born is the grandfather of Olivia Newton John. 
 
Applying second-order ∃-I to the predicate “grandfather”, (3) implies: 
 

(4) There is a relation R such that Max Born bears R to Olivia New-
ton John. 

 
This is the Ramsey sentence of (3). Call it ℜ(3). There is a sense in which 
the truth of ℜ(3) is nearly trivial. More exactly, 
 

(5) ℜ(3) is true iff (3) is satisfiable on a domain containing Max and 
Olivia. 

 
 Example 2: Suppose L is a formalized language and Θ is an L-theory. 
Consider the claim, 
 

(6) The theory Θ has a model with domain D. 
 
This is equivalent to, 
 

(7) There are relations R1,…, Rn on D such that (D, R1,…, Rn) ⊨ Θ. 

                                                 
1 “Ramsified” or “Ramseyfied”? As I understand the terminological use, the phrase 
“ramsified” is an allusion to Ramsey’s discussion of Russell’s ramified theory of 
types. Ramsey noted that the ramified theory of types is an unnecessary complication 
over the simple theory. And this observation has been expressed as a joke: “type the-
ory needs ramsification, not ramification”. 
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Thus, “Θ has a model” is, in effect, a Ramsey sentence. 
 Example 3. Suppose that M is a mathematical structure, as might 
crop up in the mathematical development of a scientific theory. For exam-
ple, M might be the abstract 4-dimensional Minkowski spacetime, 
(R4, ηab). Consider claims of the form: 
 

 Structural Representation Claims 
(8a) M “represents” the world. 
(8b) M is “isomorphic” to the world. 
(8c) The world “exemplifies” M. 
(8d) The world “instantiates” M. 

 
It’s unclear what this kind of claim means. One analysis of (8a)−(8d) 
seems to be the following: 
 

(9) There are R1,…, Rn on D ⊆ the world, with M ≅ (D, R1,…, Rn). 
 
So, (8a)−(8d) are, in effect, Ramsey sentences. Under this analysis, struc-
tural representation claims are Ramsey sentences. 
 Example 4. Suppose that Tim is the set of temporal instants and Bef is 
the physical relation of time-ordering expressed, in English, by “t1 is before 
t2”. Then a simple theory of time, ΘT, may be expressed by the statement: 
 

(10) (Tim, Bef )  ≅ (R, <R). 
 
One may “ramsify” ΘT as follows: 
 

(11) There is a set X ⊆ the world and a relation S on X with (X, S) ≅ 
(R, <R). 

 
 Example 5. Maxwell’s equations for electromagnetism may be writ-
ten as follows: 
 

(12) For any spacetime point p, (∇⋅B)(p) = 0, and (∇⋅E)(p) = ρ(p), 
etc. 

 
This is “ramsified” as follows: 
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(13) There exist vector fields X, Y, Z and a scalar field F, on space-
time such that, for any spacetime point p, (∇⋅X)(p) = 0, and 
(∇⋅Y)(p) = F(p), etc. 

 
1.2 Structuralism 
 
Throughout the 20th century, versions of scientific structuralism have been 
proposed by many philosophers of science, including Russell, Carnap, (G.) 
Maxwell, Sneed, Zahar, Worrall, Stegmüller, Redhead, French, Ladyman 
and others.2 Simplifying somewhat, one school of scientific structuralism 
(Maxwell 1970, Worrall 1989, Zahar 2001, et al.) advocates an epistemo-
logical view, embodied by a slogan along the lines of “all we can know of 
the external world is its structure”. Zahar and Worrall relate their argu-
ments back to Poincaré, and further back to Kant. These views are usually 
motivated by epistemological considerations about what we can come to 
know about the world. For Poincaré, Zahar and Worrall, these considera-
tions involve theory change in science.  

It is probably sensible to begin with the version of epistemological 
structuralism given by Russell (Russell 1919, 1927), who wished to ana-
lyse the relation of cognition to the external world. In modern terminology, 
Russell’s idea is that a “phenomenal structure” of some sort is built up in 
the mind on the basis of perceptual experience. This contains the percepts 
arranged in a relational structure. The mind is directly acquainted with 
this structure. But we are, on Russell’s view, not directly acquainted with 
external reality. In a sense, we know it only by “description”. To cash this 
out, Russell suggested, again with modern terminology, that the relation of 
this phenomenal structure to the world is that it is “isomorphic” to the 
world. For example, let the phenomenal domain P be the set of auditory 
pitches {Do, Re, Mi, Fa, So, La, Ti}, familiar to readers who have seen The 
Sound of Music. Let the distinguished relation H be the perceptual relation 
“has higher pitch than”. Then the structure (P, H) is the corresponding 
phenomenal structure. Russell’s idea is that experience brings us into di-
rect acquaintance with a phenomenal structure Mphen. Then our scientific 
knowledge of the external world, in general, takes the following form: 
 

(14a) The world W exemplifies (or: instantiates) Mphen. 
                                                 
2 In addition, we have other forms of “structuralism”, including Saussure in linguistics, 
Levi-Strauss in anthropology, and the more plausible mathematical structuralism of 
Shapiro and Resnik. 
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(14b) Mphen represents (or: is isomorphic to) the world W. 
 
These are “structural representation claims” whose obvious analysis is a 
Ramsey sentence, thus: 
 

(15) For some D ⊆ W, there are R1,…, Rn on D with (D, R1,…, Rn) ≅ 
Mphen. 

 
There is a connection between Russell’s structuralism and a more recent 
position concerning the nature of theories, the “model-theoretic” concep-
tion of theories, which holds that a scientific theory is, or is to be “pre-
sented” as, a “class of mathematical structures” or a “class of models”. The 
main problem with the model-theoretic conception of theories concerns its 
repudiation of semantics.3 For, if a theory is a class of mathematical struc-
tures, it is extremely unclear what it means to say of a theory (a collection 
of structures) that it is true. There is no familiar sense in which structures 
are truth-bearers. In contrast, under ordinary Tarskian semantics, truth 
bearers are formulas of some interpreted language L. An interpreted lan-
guage L may be construed as a pair (L, M), where L is an uninterpreted 
language, and M is an L-structure (or interpretation). Then truth of a for-
mula ϕ in L is precisely defined in the usual way. I.e., ϕ is true in L iff M 
⊨ ϕ. Alternatively, truth bearers may be taken to be propositions (e.g., 
those expressed by sentences in an interpreted language). Indeed, in my 
view, scientific theories simply are collections of propositions. But models 
and structures are not truth-bearers.4 So, what does it mean to say of a 
structure (or model) that it is “true”? For example, given a class Σ of struc-
tures (e.g., the models of Peano arithmetic; the countable dense linear or-
derings without endpoints, etc.), what could the following mean: 
 

(16) The class Σ of structures is true? 
 
Perhaps, (16) means something like: 
 

                                                 
3 Ironically, the model-theoretic conception is sometimes called the “semantic view” 
of theories. But the central concepts of semantics are truth, meaning and reference. 
And there is no defined notion of a structure, or model, being “true”.  
4 One can, in fact, define an auxiliary notion of an “interpretation” ℑ of a structure M. 
One can go on to define “M is correct, under ℑ”. But we lack the space here to discuss 
this. 
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(17) Some M ∈ Σ “represents” (or “is isomorphic to”) the world. 
 
This is a “structural representation claim” again, whose meaning is, pre-
sumably: 
 

(18) For some M ∈ Σ, there are R1,…, Rn on D ⊆ the world such that 
M ≅ (D, R1,…, Rn). 

 
Again, this is a Ramsey sentence. So, advocates of the model-theoretic 
conception of theories are committed to ramsification, but in a less obvious 
way. The model-theoretic conception of scientific theories tends to be as-
sociated with a certain subschool of scientific structuralism: “ontic struc-
tural realism” or “ontological structuralism” (see Ladyman 1998, French & 
Ladyman 2003, Brading & Landry 2005 et al.). Insofar as I grasp its 
claims, it appears to rest on two main lines of argument. First, there are 
certain arguments about indiscernibility in quantum theory and spacetime 
theory, alleged to have structuralist consequences; second, a preference for 
the model-theoretic conception of scientific theories. In contrast with the 
idea that our knowledge is limited to the world’s “structure”, the slogan is 
something like “all there is is structure” (Brading & Landry 2004). This is 
baffling. The standard conception of structure is the usual one from logic 
and mathematics: a domain, with some sequence of distinguished rela-
tions. So, does “all there is is structure” mean that reality has a domain and 
a sequence of distinguished relations? Is ontological structuralism the view 
that: 
 

 Reality is a Structure  
(19) Reality itself is a structure, of the form (W, R1,…, Rn)?  

 
If one makes this metaphysical assumption then the Newman objection 
discussed below does not apply. For, in that case, claiming that a given 
structure M is “isomorphic to the world” is then the claim that M ≅ 
(W, R1,…, Rn). This is non-trivial. For example, suppose that reality, at bot-
tom, has two basic distinguished 3-place relations, R1 and R2. Suppose our 
representing structure M is the usual field (R, +, ×) of real numbers. Then 
the claim that (R, +, ×) ≅ (W, R1, R2) is highly non-trivial. However, if one 
does not make the “reality is a structure” assumption, the Newman objec-
tion does apply, and the structural representation claim “M is isomorphic 
to the world” is equivalent to “The world has cardinality at least |M|”. As 
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things stand, I do not know whether or not advocates of ontological struc-
turalism do or don’t make this metaphysical assumption. 

In contrast, the epistemological school of scientific structuralism 
tends to maintain that theories be identified with their linguistic formula-
tions, holding the “cognitive content” of a theory Θ, expressed in an inter-
preted language L, to be given by its Ramsey sentence ℜ(Θ) (see, e.g., 
Carnap 1956). The epistemological claim is that when a theory Θ satisfies 
certain conditions of epistemic warrant (predictive, explanatory success, 
etc.), one is justified in accepting that ℜ(Θ) is true, or approximately true. 
This is meant to implement the vague idea that all we know of reality is its 
“structure”, while its “nature” remains forever hidden.5 
 
1.3 Newman’s Objection 
 
A central problem with structuralism, epistemological or ontological, is the 
objection given by the Cambridge mathematician M.H.A Newman in a 
short critical review (Newman 1928) of Russell’s Analysis of Matter (Rus-
sell 1927). After quoting some examples of Russellian structural represen-
tation claims, Newman comments, 
 

[A]ll we can say is, “There is a relation R such that the structure of the external 
world with reference to R is M”. Now I have already pointed out that such a 
statement expresses only a trivial property of the world. Any collection of 
things can be organised so as to have the structure M, provided there are the 
right number of them. Hence the doctrine that only structure is known involves 
the doctrine that nothing can be known that is not logically deducible from the 
mere fact of existence, except (“theoretically”) the number of constituting ob-
jects. (Newman 1928, p.144; slight change in notation.) 

 
So, if all that we know of reality is that it “instantiates” a structure M, then 
it follows that we know nothing more than a lower bound on the cardinal-
ity of reality. The mathematical point is this: 
 

                                                 
5 Ramsey sentences crop up elsewhere, including Lewis’s 1970 view concerning how 
to “define” theoretical terms, and versions of functionalism in philosophy of mind. (A 
Lewis sentence is stronger than a Ramsey sentence, as it contains uniqueness quantifi-
ers.) 
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Basic Mathematical Point 
The following statements are equivalent: 
(a) There exists a structure MW on some subset of W such that 

MW ≅ M. 
(b) |M| ≤ |W|. 

 
Consider again the structural representation claims of the sort associated 
with the model-theoretic conception of theories: 
 

(20a) Minkowski spacetime (R4, ηab) “represents” (or is “isomor-
phic” to) the world.  

(20b) The world instantiates, or exemplifies, Minkowski spacetime 
(R4, ηab). 

 
Newman’s objection is that these are equivalent to saying: 
 

(21) The cardinality of the world is at least 2ℵ0. 
 
Thus, whether a class Σ of structures is “true” or not depends merely on the 
cardinality of the world.  
 For epistemological structuralism, the situation is more complicated. 
Consider a scientific theory Θ, expressed in an interpreted language L with 
domain W. Suppose first that all predicates are “ramsified”. Then New-
man’s point tells us that, 
 

(22) ℜ(Θ) is true iff Θ has a full model with cardinality |W|.  
 
So, the truth of ℜ(Θ) reduces to a satisfiability condition, weaker than Θ’s 
truth. However, perhaps some predicates, the “observational” ones, should 
not be ramsified. This is the standard approach, associated with Carnap, 
Maxwell, Worrall and Zahar. Does Newman’s objection apply here? The 
first discussion of this scenario was given in an interesting and very impor-
tant 1985 article by William Demopoulos and Michael Friedman, who 
summarize the application of Newman’s objection in this case as follows: 
 

[I]f our theory is consistent, and if all its purely observational consequences are 
true, then the truth of the Ramsey-sentence follows as a theorem of set theory or 
second-order logic, provided our initial domain has the right cardinality – if it 
doesn't, then the consistency of our theory again implies the existence of a do-
main that does. (Demopoulos & Friedman 1985, p.635.) 
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The implications seem to be devastating: 
 

(i)  Epistemological structuralism reduces to a version of anti-realism 
(constructive empiricism, instrumentalism, or something similar).  

(ii) Ontological structuralism reduces to the claim that every scien-
tific theory can be re-expressed as “the world has cardinality at 
least κ”. 

 
The main technical conclusion given by Demopoulos and Friedman – let 
us call it DF – has been endorsed by several authors in the recent literature 
on the scientific realism debate (e.g., Psillos 1999). My intention in Ket-
land 2004 was to clarify the matter by providing an appropriate framework 
for formalizing scientific theories and seeing how to prove DF. As it turns 
out, DF formulated as above is not quite correct: the main block in the 
proof is a kind of ω-inconsistency (see footnote 10 below for some details). 
However, with certain modifications to the formulation of DF, one gets 
closely connected results (see, e.g., Theorems 1, 4 and 5 below). The main 
result of Ketland 2004, using a 2-sorted formalization of the language of 
scientific theories, was: 
 

ℜ(Θ) is true iff Θ has a full model which is T-cardinality correct and 
empirically correct. 

 
Thus, ramsification threatens to trivialize the content of scientific knowl-
edge. For structural claims are, in effect, cardinality claims. Recently, 
there has been much further discussion of the Newman-Demopoulos-
Friedman objection. The two most interesting discussions, in my view, are 
Cruse 2005 and Melia & Saatsi 2006. Melia and Saatsi propose to intro-
duce into theory formulations certain higher-order modal relations between 
theoretical relations. I am not convinced that this approach will work. 
Cruse’s points, concerning the observation-theory distinction, are more 
closely relevant to what is discussed below.6 
 

                                                 
6 See Ainsworth 2009 for a clear survey of the main results, and some new ones, and 
an excellent discussion of some of the main lines of reply that have been given to 
Newman’s objection. 
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2  FORMALIZATION OF SCIENTIFIC THEORIES 
 
2.1 Empirical Adequacy and the O/T Distinction 
 
Below, we introduce two formalization schemes for scientific theories. The 
notion of “empirical adequacy” has to be defined somehow. Trying to do 
this carefully, one notices two notions of observationality at play. First, the 
notion of observable objects; second, the notion of observational predi-
cates (or relations). In light of this, one might argue that an observational 
predicate could, in principle, be true of unobservable objects (or could re-
late observable objects to unobservable ones, or even unobservable objects 
to unobservable ones). Consider the predicate “part of”. Suppose we take 
“part-of” to be observational. Consider the following three statements: 
 

(23a)  My left thumb is a part of my left hand. 
(23b) There are blood cells which are parts of my left thumb. 
(23c)  There are molecules which are parts of blood cells. 

 
Statement (23a) involves a relation between observable objects; an observ-
able state of affairs. Statement (23b) is mixed: the corresponding state of 
affairs involves a relation holding between an unobservable objects and an 
observable one. Statement (23c) concerns a relation holding between un-
observable objects. So, does “part of” count as an observational predicate? 
Must an “observational” predicate apply only to observable objects?  

If we say No, then the obvious 1-sorted way to formalize scientific 
theories leads to “observational” statements whose truth value depends 
upon the properties of unobservable objects. If we say Yes, then one cannot 
get a theorem of the kind that Demopoulos and Friedman were after unless 
one uses the 2-sorted formalization used in Ketland 2004. On the 2-sorted 
approach, we represent (23a)−(23c) as involving three distinct predicates, 
say “partO”, “partM” and “partT”, depending on the observational status of 
their relata. So, the empiricist desire to impose an O/T distinction has 
forced us to “split” the part-of relation into three separate relations.7 How-

                                                 
7 I described this “relation-splitting” objection to the O/T distinction in talks in 2002 
(at LSE and Leeds); in Ketland 2004, I commented: “The technical framework de-
scribed here … is riddled with further problems … [M]any scientifically significant 
relations and quantities will ‘decompose’ into three strangely distinct relations, de-
pending upon the observational status of their relata” (Ketland 2004, p.289, footnotes 
3 and 4.) 
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ever, on this 2-sorted approach, the observational predicates do only have 
observable objects as their relata; and one then obtains a correct DF-style 
result.  

A less metaphysically artificial approach introduces either a distinc-
tion in the semantics (by supposing that some special subset Obs of the 
domain W of the intended interpretation consists of the observable objects) 
or by explicitly introducing into the theory-formulation language a primi-
tive unary predicate Obs(x) meaning “x is an observable object”, and defin-
ing the observationla statements by restricting quantifiers to Obs(x). (Cf., 
in set theory, one can restrict quantifiers to a given set, e.g., ω.) This is, in 
effect, a 1-sorted formalization, in which the observable objects are explic-
itly distinguished by some predicate. We shall briefly discuss this approach 
below, in Section 3. However, one cannot then get a DF-style result, be-
cause the relevant notion of “empirical adequacy” is too weak to entail the 
truth of the Ramsey sentence (see the remarks after Definition E below). 

However, the usual approach, associated with Carnap, is to consider 
a 1-sorted theory-formulation language L with primitive predicates parti-
tioned into “observational” and “theoretical” ones, saying nothing about 
the observational status of the objects to which these predicates apply. In 
particular, the domain W of the interpreted language may contain unob-
servables and the O-predicates are permitted to apply to these. On this ap-
proach, one may define a notion of “O-adequacy” and one obtains a DF-
style result, “ℜ(Θ) is true iff Θ is O-adequate”. However, the problem is 
that “O-adequate” doesn’t mean what is intended. For the quantifiers of L 
range over all elements of W, including unobservables. So, certain “obser-
vational” statements will be true/false in virtue of facts about unobservable 
objects.  
 
2.2 One-Sorted Formalization 
 
Scientific theories are to be formulated in a one-sorted, second-order, the-
ory formulation language L with identity. Non-logical primitives of L are 
classified into two kinds: observational predicates, Oi, and theoretical 
predicates, Ti. The sublanguage of L from which the theoretical predicates 
and second-order variables have been deleted is called L’s observational 
sublanguage, denoted LO. An L-theory Θ is a deductively closed set of L-
sentences. We may identify a theory Θ with some axiomatization of it; if Θ 
is finitely axiomatizable, then we may identify Θ with a single formula 
which is the conjunction of the axioms. Suppose Θ is the single axiom for 
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a finitely axiomatized L-theory. The Ramsey sentence ℜ(Θ) is obtained by 
replacing, in Θ, each occurrence of a theoretical predicate Ti by a second-
order variable Xi of the same arity, and prefixing the result with a string of 
existential quantifiers, one for each variable Xi that appears. Thus,  
 

Definition A 
ℜ(Θ) is: ∃X1 … ∃XnΘ(T1/X1,…, Tn/Xn). 

 
L is given a special partial interpretation (W, {Oi}), where W is the domain 
over which the quantifiers range and the Oi are the “observational” rela-
tions on W which interpret the observational predicates Oi. We suppose 
that W = Obs ∪ Unobs, where Obs is the set of “observable” objects and 
Unobs is the set of “unobservable” objects. (Obs and Unobs are assumed 
disjoint.) As discussed above, we allow “observational” predicates to apply 
to some unobservable objects. The semantics is standard Tarskian seman-
tics.8 
 
2.3 Two-Sorted Formalization 
 
The language L is now a two-sorted, second-order, language with identity. 
The non-logical primitives of L are classified into three kinds: observa-
tional, Oi; mixed, Mi; and theoretical, Ti. The sublanguage from which the 
theoretical and mixed predicates have been deleted is L’s observational 
sublanguage, denoted LO. If Θ is a finitely axiomatized theory in L, the 
Ramsey sentence ℜ(Θ) is obtained by ramsifying the theoretical and mixed 
predicates. L has a special 2-sorted partial interpretation ((DO, DT), {Oi }), 
where DO is the domain of observable objects and DT is the domain of un-
observable objects. (These are disjoint.) The two sorts of variable range 
over these distinct domains. 
 
 

                                                 
8 For second-order sentences of L, standard full semantics is assumed. 
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3  EMPIRICAL ADEQUACY AND O-ADEQUACY 
 
As noted above, the relevant notion of empirical adequacy is tricky to for-
mulate on the 1-sorted formalization.  
 

Definition B 
The substructure (Obs, {Oi|Obs}), generated by the subset Obs, is the 
empirical substructure of (W, {Oi}). 
 
Definition C 
An L-theory Θ is weakly empirically adequate iff all LO-theorems of 
Θ are true in (Obs, {Oi|Obs}). 

 
Perhaps a better analysis of the notion of empirical adequacy requires an 
embedding of the empirical substructure into some model of Θ. That is: 
 

Definition D 
An L-structure M = (D, {Ri

O}, {Ri
T}) is empirically correct iff there 

is an embedding f : (Obs, {Oi|Obs}) → (D, {Ri
O}). 

 
Definition E 
An L-theory Θ is empirically adequate iff Θ has a full model which 
is empirically correct. 

 
Sadly, Definitions A-E are pointless. For the adequacy conditions on Θ 
given in Definitions C and E are too weak to imply the truth of ℜ(Θ). As it 
turns out, if we want DF-style results, we must either move to the 2-sorted 
formalization or introduce a stronger notion, “O-adequacy”: 
 

Definition F 
An L-theory Θ is weakly O-adequate iff all LO-theorems of Θ are 
true. 
 
 Definition G 
An L-structure M = (D, {Ri

O}, {Ri
T}) is O-correct iff (D, {Ri

O}) ≅ 
(W, {Oi}). 
 
 Definition H 
An L-theory Θ is O-adequate iff Θ has a full, O-correct, model. 
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Next, assume the 2-sorted formalization.  
 

Definition I 
A 2-sorted L-structure M = ((D1, D2), {Ri

O}, {Ri
M}, {Ri

T}) is empiri-
cally correct iff (D1, {Ri

O}) ≅ (DO, {Oi}). 
 
Definition J 
A 2-sorted L-structure M = ((D1, D2), {Ri

O}, {Ri
M}, {Ri

T}) is T-card-
inality correct iff there is a bijection f : D2 → DT. 

 
 
4  MAIN RESULTS 
 
On the 1-sorted formalization, we first show that ℜ(Θ) is true iff (W, {Oi}) 
can be expanded to a full model of Θ. Hence: 
 

Theorem 1: ℜ(Θ) is true iff Θ is O-adequate. 
 
Note that O-adequacy (Definition H) is stronger than empirical adequacy 
(Definition E). So, ℜ(Θ)’s truth is not necessarily implied by Θ’s empirical 
adequacy. Next, consider whether weak O-adequacy is sufficient for the 
truth of ℜ(Θ). First, we can show, 
 

Theorem 2: If Θ is O-adequate, then Θ is weakly O-adequate. 
 
However, the converse is not true: 
 

 Theorem 3  
There are weakly O-adequate theories Θ which are not O-adequate. 

 
This occurs only when the intended domain W is infinite. We can fix things 
up a bit: 
 

Theorem 4: Suppose W is finite. Then ℜ(Θ) is true iff Θ is weakly 
O-adequate.9 

                                                 
9 The proof uses the following lemma: Let L* be a sublanguage of L. Suppose Θ* is 
the set of L*-theorems of Θ. Then any finite model of Θ* can be expanded to a model 
of Θ. 
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This is the closest we get, on the 1-sorted formalization, to the original 
claim of Demopoulos & Friedman 1985, which spoke of the truth of “all 
purely observational consequences” (i.e., weak adequacy). Two comments 
are worth making. First, we must use the notion of “weak O-adequacy” 
rather than the notion of weak empirical adequacy; second, the domain W 
of the intended interpretation must be finite.10 
 On the 2-sorted formalization, we obtain, 
 

Theorem 5 
ℜ(Θ) is true iff Θ has a full empirically correct and T-cardinality 
correct model. 

 
In this framework, the truth condition for ℜ(Θ) now involves empirical 
adequacy, not O-adequacy: this was the motivation for using this frame-
work in Ketland 2004. However, Cruse 2005 has criticized my decision to 
ramsify the “mixed” predicates on the 2-sorted formalization. Cruse argues 
that mixed predicates should count as “observational” and thus shouldn’t 
be ramsified. However, this definition of “observational predicate” be-
comes analogous to the notion of O-predicate on the 1-sorted approach. 
One can then give a definition of an “O-M correct” structure: 
 

 Definition K 
An L-structure ((D1, D2), {Ri

O}, {Ri
M}, {Ri

T}) is O-M correct iff 
((D1, D2), {Ri

O}, {Ri
M}) ≅ ((DO, DT), {Oi}, {Mi}). 

 
A modification of the proof of Theorem 5 gives: 
 

Theorem 6: ℜ(Θ) is true iff Θ has a full model which is O-M cor-
rect. 

                                                 
10 If we admit possible worlds containing an infinity of observables, resembling the 
natural numbers, then counterexamples to the original DF claim can be given. In Ket-
land 2004, one is given based on the ω-inconsistent Friedman-Sheard truth theory over 
Peano arithmetic, using results obtained by McGee 1985 and Halbach 1999. A similar 
counterexample can be given based on the ω-inconsistent, conservative extension of 
Peano arithmetic, based on Yablo’s paradox, discussed in Ketland 2005. Another 
counterexample appeared in van Benthem 1978, based on the (r.e.) theory of (ω, <) 
extended by axioms saying “there is a T”, but “0 ∉ T and, for all x, if x ∉ T, s(x) ∉ T”. 
In each case, we obtain examples of theories which are weakly O-adequate (and have a 
model of the right size), but their Ramsey sentences are not true. 
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This is Theorem 1 in disguise. ℜ(Θ)’s truth condition now involves facts 
about unobservables. However, information about the purely theoretical 
relationships amongst unobservables has again been reduced to mere car-
dinality (encoded into the bijections required for O-M correctness). So, this 
response achieves little. 
 
 
5  CONCLUDING COMMENTS 
 
It seems to me that the results above confirm Demopoulos and Friedman’s 
main conclusion that ramsification “trivializes physics” (Demopoulos & 
Friedman 1985, p.635); ramsification leads to what might be called physics 
without physics. That is, purely structural content just is cardinality con-
tent.11 So far as I can see, if one wishes to avoid such conclusions, one 
must adopt a form of scientific essentialism or natural kinds realism: 
 

Scientific Essentialism/Natural Kinds Realism 
Nature has its own special “natural kind” structure; second-order 
variables only range over the relations that are “natural”. 

 
Thus, Ramsey sentences should be understood as follows: 
 

(24) There are natural relations R1,…, Rn such that Θ(R1,…, Rn). 
 

However, is scientific essentialism consistent with scientific structuralism? 
The structuralist, epistemological or ontological, must take the metaphysi-
cal notion of “natural relation” as an unreduced primitive in theorizing, 
and must assume from the outset that reality has a built-in natural kind 
structure. 
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