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Corrollarial and Theorematical Experiments With Diagrams

Frederik Stjernfelt, Aarhus

I hope that, before I cease to be usetful in this world,  may be able to define better
than I now can what the distinctive essence of theoric thought is. I can at present
say this much with some confidence. It is the directing of the attention to a sort
of object not explicitly referred to in the enunciation of the problem at hand ...
(Peirce ‘Specimens of Mathematical Mazes’, 1908, NEM 111, p. 622)

A central aspect of Peirce’s doctrine of diagrammatical reasoning is the idea
of using the diagram as a tool for making deductions by performing rule-
bound experiments on the diagram. This paper discusses Peirce’s distinc-
tion between two classes of diagram proofs, ‘corollarial’ and ‘theorematical’,
respectively—a distinction he himself saw as his first major discovery.
Theorematical reasoning concerns diagram experimentation involving the
introduction of new material—in particular, I shall investigate the issue of the
structure of theorematical diagram experiments, propose three types of such
experiments and connect them to the role played by hypostatic abstractions
in those experiments.

The increasing interest in Peirce’s philosophy of logic as well as his
philosophy of science highlights the importance of his notion of deductive
reasoning as based on diagrams. As argued by several authors in Moore 2010
(Tiercelin and Cooke), this can be taken as providing an original solution
of the dilemma which has haunted much philosophy of mathematics since
Benacerraf’s famous 1973 ‘Mathematical Truth’ article against Platonism
(in Benacerraf and Putnam 1983). Benacerraf’s paper argued against Platon-
ism and the existence of abstract objects in mathematics by setting up the
following dilemma:
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1) Mathematics claims the existence of abstract objects outside of time
and space; 2) Acquisition of knowledge takes place by means of a causal
process connecting an object with a knowing subject. But as abstract
objects are causally inert, we must either accept Platonism and reject causal
epistemology—or we must embrace causal epistemology and refuse
Platonism. Due to the prominence of causal reference theories at the time,
Benacerraf’s choice seemed obvious: abstract objects and Platonism must
be discarded in the face of the seeming evidence of causal epistemology.
Literally taken, Benacerraf’s argument would, in fact, eliminate not only ab-
stract objects but a series of other aspects of the world, such as many proper-
ties (color, pitch, shape ...) which may also be suspected for being causally
inert in the billard-ball causation theory of the second horn of the dilemma.

Causal reference theories hardly hold the attraction which they did in the
1970s, and the role of diagram experiments in an alternative, Peircean way
of cutting the cake is the following. To Peirce, deduction and mathemati-
cal reasoning are one and the same. Mathematics is defined by two things,
methodologically and substantially, respectively. The former comes from the
definition of mathematics that he inherited from his father, the mathema-
tician Benjamin Peirce: mathematics is the science that draws necessary
conclusions. Peirce’s own addition to this doctrine pertains to the subject
matter of those necessities: the object of mathematics is hypotheses concern-
ing the forms of relations. All mathematical knowledge thus has a hypothetical
structure: if such and such entities and structures are supposed to exist, then
this and that follows. We might call this weaker variant of commitment to ab-
stract objects ‘hypothetical Platonism’. This admission liberates you, of course,
from the presupposition of a strange, space-time-less realm of real existence—
but it commits you, on the other hand, to further existence modes than that
of particular individuals, which is why diehard nominalists will hardly feel
attracted by Peirce’s alternative. Peirce’s doctrine operates with no less than
two further existence modes than that of individuals, namely that of possibility
—May-Bes’—and that of real possibility—‘Would-Bes’. Mathematics being
hypothetical through-and-through then forms a subset of the latter. The
crucial role of diagrams, now, is that the notion of reasoning by diagram
experiments furnishes an epistemological alternative to Benaceraffian causal
reference. The idea is that diagrams form the epistemological means of access-
ing hypothetical abstract objects. They do that in two steps, as it were. One step
is taking a diagram token, a drawing on paper, blackboard, computer screen,
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or in the imagination, and subjecting it to ‘prescission’, the imaginary strip-
ping it of accidental qualities so that only the relevant, controllable, general,
schematic relations are left—permissing the observer to grasp, through the
token, its type. This process of prescission, of course, is not arbitrary nor
subjective and is governed by symbols and rules, explicitly or implicitly. Once
the type is grasped, it may, by the intermediary of its physical token, be
subjected to experimental manipulation, in imagination or on a physical
diagram replica, or both. Certain types of transformation are allowed, others
not so, corresponding to truth-preserving logical reasoning steps. So diagram
experimentation constitutes the if-then hypothetical structure of mathematics
and thus gives mathematical knowledge its conditional, modal character.

The observation of diagram tokens/types, of course, is prefigured in the
perception of ordinary objects as tokens of types—just like the prescission
process stripping the token of its accidental qualities in order to access its type
is a more formalized version of similar processes when we address natural
kinds by stripping away accidental properties in order to constitute catego-
ries like red, chairs, running—or even the category of an individual persist-
ing in time despite its changing appearances. General structures and shapes
of reality are present already in the perceptual stream, and it is no wonder
we, as biological beings, have become adapted to focus upon such features in
perceptual structures. This very ability, however, may now be recycled apart
from its basis in real objects to be put to use to purified imaginary objects like
those of mathematics.

This argument pertains to pure, mathematical diagram reasoning; now
what about the vast amount of applied diagrams representing empirical
states-of-affairs? Peirce’s system of the sciences offers an explanation of the
efficacy of such diagrams—mnamely that they inherit, explicitly or implicitly,
the mathematical structure of pure diagrams and add further constraints
to those diagrams stemming from the special science of the domain to
which they pertain.! Thus, all deductive reasoning, everyday or scientific,
is taken to involve a mathematical-diagrammatical scaffolding, and nec-
essary inferences in all sciences as well as in everyday reasoning employ
mathematics, implicitly or explicitly. In Stjernfelt (2007), I have attempted a
reconstruction of Peirce’s overall doctrine of diagrams and diagrammatical
reasoning, arguing that this cluster of ideas forms the center of a Peircean
epistemology as well as it constitutes an important contribution to contem-
porary realist semiotics in general.
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In this paper, I shall take a closer look at the notion of diagram
experiment based on Peirce’s famous distinction between two such classes of
experiments, giving rise to Corollarial and Theorematical reasoning,
respectively. On the base of this distinction, a series of important issues are
addressed. To what degree does this distinction capture different formal
classes of problem difficulty? How may we distinguish between different types
of Theorematic reasoning? And what is the relation between diagram experi-
ments and hypostatic abstraction?

In the years after 1900, Peirce returns over and over again to the Corollar-
ial/ Theorematical-distinction, famously celebrating it as his own first “real
discovery” (in his Garnegie application 1902). The overall idea is that corol-
larial deduction has a conclusion which fleshes out a proposition which lay
already implicitly in the premisses—thus conforming to the Kantian idea
of logical conclusions offering nothing which was not already defined in the
premisses. By contrast, theorematic (or theorematogenic, or theoretic, or
theoric) reasoning forms a more demanding and creative type of reasoning
where some new elements must be experimentally added to the premisses
before reaching the conclusion.

Take a simple example: asking the question of the size of the perimeter of
a square with the side s, the conclusion may be reached based on the very defi-
nition of a square as a quadrangle with four equal sides or by a very simple
diagram experiment of counting sides, using the following diagram:

Fig.1:  Square with the side s

The result of 4s is easily reached by both of these means. By comparison, the
famous Euclidean proof of the angle sum of the triangle being equal to two
right angles may serve as an example of theorematic reasoning:

A E

Fig. 2:  Angle sum of a triangle B C D
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This proof requires the addition of auxiliary lines to the triangle—here CE
and CD, parallel to AB and prolonging BC, respectively—to establish the
proof based on the fact that the three angles meeting at C have the same
sizes as those of the triangle. BCA participates in both of the two sums,
ACE is equivalent to BAC, while ECD is equivalent to ABC.? The sum of
the three angles meeting at C—BCA, ACE, and ECD—is obviously two
right angles. But this is impossible to derive from mere definitions of ‘angle’
and ‘triangle’ just like it is impossible to prove from the triangle diagram
without any additions.

The terminology of corollarial/theorematic comes from Euclid whose
editors named simple inferences corollaries—while propositions to be proved
were theorems. Peirce judges that some of Euclid’s theorems are, in fact,
mere corollaries—the overall distinction is taken to rely upon the necessity of
experimenting by adding new elements to the diagram, elements which disap-
pear in the final, general statement of the proof. The theorem that the angle
sum of a triangle equals two right angles does not, for example, in any way
refer to the subsidiary lines necessary to reach the proof.

The basic issue behind this distinction is, of course, the duplicity of
mathematics, being apodictic and inexhaustible at one and the same time.
How is it possible that mathematicians find results by necessity while at the
same time new, unexpected discoveries abound among these results, just like
in the empirical sciences? This issue troubled Peirce for a long time. Already
when constructing his first formal language for logic, in his 1885 masterpiece
‘On the Algebra of Logic’, he reasoned:

It has long been a puzzle how it could be that, on the one hand, mathemat-
ics is purely deductive in its nature, and draws its conclusions apodictically,
while on the other hand, it presents as rich and apparently unending a series
of surprising discoveries as any observational science. Various have been the
attempts to solve the paradox by breaking down one or other of these asser-
tions, but without success. The truth, however, appears to be that all deduc-
tive reasoning, even simple syllogism, involves an element of observation;
namely, deduction consists in constructing an icon or diagram the relations
of whose parts shall present a complete analogy with those of the parts of the
object of reasoning, of experimenting upon this image in the imagination,
and of observing the result so as to discover unnoticed and hidden relations
among the parts. (CGP 3.363)
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Here, the inexhaustibility of mathematics is explained by means of Peirce’s
first, germ-like diagram reasoning doctrine—as a generalization, interestingly,
of his linear algebra of logic, far from the ordinary conception of diagrams.
The ‘unnoticed and hidden’ relations obtainable by diagram observation, of
course, are what are later taken to require theorematic deduction, in addition
to mere inference from definitions.

Even if the problem addressed by the distinction is thus an early concern
in Peirce, it seems only in the years after 1900 that he explicitly coins the
corollarial/theorematic distinction and sets out to elaborate it. Only in 1901,
we seem to witness the nascent terminology of the distinction appearing:

1901 Oct 12

If my present view, held for four or five years, is right that Abduction Deduction
Induction are Premarian, Secundarian, and Tertian, then there ought to be two
types of Deduction & three of Induction [...] Now I don’t recognize any such
two types of Deduction. [...] We can distinguish Deductions into those which
are corollarific and those which are theorematogeneous. The former merely
require the careful consideration of the conclusion, the latter involve outside
considerations,—subsidiary lines, etc. But this seems a methodeutic not a criti-
cal distinction. (Logic Notebook Ms. 339, p. 362; earlier on the page, Peirce at-

tempts to distinguish proposition deductions and term deductions).

Later, Peirce will include the corollarial/theorematic distinction in his critical
table of inference types—but this early quote points to the fact that the latter
part of the distinction sits uneasily on the critical/methodeutic divide (today,
we would rather speak of logic versus heuristics or theory of science). Theo-
rematic reasoning requires an inventiveness or even ingenuity which makes
it alien to a narrow concept of logic—even if its results, on the other hand,
remain purely deductive.

This apparently simple distinction covers a whole bunch of interesting
issues: that of the much more outspoken experimental character of theore-
matical reasoning as compared to corollarial reasoning, that of finding suit-
able new elements to add, that of instantiating those elements in particulars
(only a particular set of lines in the angle sum example will lead to the proof),
that of the character of those elements, that of the relation of the diagram
experiment to verbal instructions and definitions, that of the strategy of
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finding the proper elements to add. Probably for this reason, Peirce’s descrip-

tion of theorematical reasoning differs to some extent from time to time.

Theorematic diagram experiments in Peirce

Let us run through Peirce’s different definitions.

1) The basic idea is the indirect conception that theorematical reasoning,
unlike corollarial reasoning, is not reducible to inferences from concept defi-
nitions: ‘An accurate definition of Corollarial Demonstration would require a
long explanation; but it will suffice to say that it limits itself’ to considerations
already introduced or else involved in the Explication of its conclusion; while
Theorematic Demonstration resorts to a more complicated process of thought.’
(A Neglected Argument for the Reality of God’, 1908, CP 6.471, EPII, p. 442)
This brief definition of theorematic reasoning, of course, is merely negative
and contrastive vis-a-vis Kant’s description of logic as tautological, and most of
Peirce’s descriptions of the pair of concepts take their point of departure in the
inability of certain theorems to be proved by corollarial reasoning:

Deductions are of two kinds, which I call corollarial and theorematic. The corol-
larial are those reasonings by which all corollaries and the majority of what 1is
called theorems are deduced; the theorematic are those by which the major
theorems are deduced. If you take the thesis of a corollary, 1. e., the proposition
to be proved, and carefully analyze its meaning, by substituting for each term
its definition, you will find that its truth follows. (‘On the Logic of Drawing
History from Ancient Documents’, 1901, CP 7.204, EPII, p. 96—after which
the quote continues with a more positive definition of theorematic reasoning
(cf. below)).

Even if corollarial reasoning counts as the ideal and should be preferred
whenever possible because of its simplicity, a certain class of ‘major theo-
rems’ require more than careful description in terms of concept analysis. This
necessity stems from the general impossibility of defining things, in all cases,
so that all their properties will be corollaries from their definition. Peirce ad-
dresses this when claiming that the best translation of Greek ‘episteme’ is
‘comprehension’ which is ‘... the ability to define a thing in such a manner
that all its properties shall be corollaries from its definition. Now it may be
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that we shall ultimately be able to do that, say for light or electricity. On the
other hand, it may equally turn out that it forever remains as impossible as it
certainly is to define number in such a way that Fermat’s or Wilson’s theorems
should be simple corollaries from the definition.” (‘On Science and Natural
Classes’, 1902, EPII, p. 129). Even if much in arithmetics is corollarial (such
as Kant’s famous 7+5=12 which Peirce refuses to admit the status of synthetic
a priori for the same reason), complicated theorems of arithmetics are not.’
So the impossibility of defining things, in all cases, so that all their essential
properties flow from the definition, obviously forms the first argument for the
necessity of theorematic reasoning.

2) A basic way of describing theorematic reasoning more positively,
now, is as involving the addition of new elements to the premisses (abstrac-
tions or not, foreign ideas or existential instantiations of general objects the
existence of which is granted by the universe of discourse). Peirce seems to
have received this idea about the introduction of a new element from no less
than George Boole’s widow in 1898:

The widow of the great Boole has lately written a little book in which she
points out that, in solving a mathematical problem, we usually introduce some
part or element into the construction which, when it has served our purpose, is
removed. Of that nature is a scale of quantity, together with the apparatus by
which it is transported unchanged from one part of the diagram to another, for
the purpose of comparing those two parts. Something of this general descrip-
tion seems to be indispensable in mathematics. (“The Logic of Mathematics in
Relation to Education’, 1898, CP 3.561)

—and his overall development of the corollarial/theorematic distinction now
covers the following decade. The addition of such objects is taken to be the
subject of an additional lemma to the premisses, supported by a postulate.
Continuing the above quote from ‘On the Logic ...” (1901), Peirce writes:

But when it comes to proving a major theorem, you will very often find you
have need of a lemma, which is a demonstrable proposition about something
outside the subject of inquiry; and even if a lemma does not have to be demon-
strated, it is necessary to introduce the definition of something which the thesis
of the theorem does not contemplate. In the most remarkable cases, this is some

abstraction; that is to say, a subject whose existence consists in some fact about
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other things. Such, for example, are operations considered as in themselves
subject to operation; lines, which are nothing but descriptions of the motion of
a particle, considered as being themselves movable; collections; numbers; and
the like. (‘On the Logic of Drawing History from Ancient Documents’, 1901,
CP 7.204, EPII, p. 96).

In Peirce’s debatable analysis, lines are abstractions from the trajectory of
particles—so the subsidiary lines in the angle sum proof are taken to be
examples of the introduction of abstractions. Be that as it may”, the quote given
here overlooks the important issue of the selection of those lines. The postulate
in Euclid that given a line and a point, a line through the point may be drawn
which is parallel to the line given, obviously lies behind the lemma of introduc-
ing the two particular auxiliary lines in the proof. But not any lines added to
the original triangle would lead us to the proof. So the selection of particular
objects to add becomes an important issue. Hintikka, in his famous development
of Peirce’s notion of theorematic reasoning, takes this ‘existential instantiation’
in the shape of ‘witness individuals’ to constitute the core of theorematical
reasoning, adding further quantified variables to those referred to in the prem-
isses. Sun-Joo Shin (2010) emphasizes the importance of this individualizing
step in reasoning: much has been spoken, since the British empiricists, of the
access to the triangle in general, but the inverse movement, that of select-
ing the right individuals to add in a proof, has received much less attention.
Hintikka insists that the addition of individuals to the premisses constitutes the
very core of Peirce’s idea: “What makes deduction theorematic according to
Peirce is that in it we must envisage other individuals than those needed to
instantiate the premise of an argument.” (1980, 110)—also other than those
needed to express its conclusion, we may add. This is what constitutes the basis
of Peirce’s ‘brilliant insight [...] that this geometrical distinction can be gener-
alized to all deductive reasoning.” (1980, 109). Thus, in Hintikka’s reconstruction,
‘... avalid deductive step is theorematic, if it increases the number of layers of
quantifiers in the proposition in question.’ (1980, 110). To Hintikka, this solves
the ancient Aristotelian riddle of logical incontinence—how can it be that one
may fail to grasp the sum total of logical consequences of the amount of knowl-
edge in one’s possession. This is because many of those consequences require
the theorematic addidion of further individuals for their proof, and Hintikka
surmises that the difficulty of a problem is roughly proportional to the amount
of new individuals needed for its solution (Hintikka 1980, 113; Stjernfelt
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2007, 107-8). This particularity of auxiliary individuals, much discussed after
Hintikka’s reinterpretation of theorematical reasoning, is surprisingly rarely
addressed in Peirce; however, this late quote connects the basis of the additional
elements in a general postulate with the particularity of those elements:

Of my two divisions of Deductions, one is into Corollarial and Theorematic
Deduction. The former requires nothing more than a logical analysis of the
premisses to furnish the conclusion. The latter involves as one of its premisses
a postulate, or proposition asserting the possibility of any object which lies in
certain definite general relation to any existing objects of a certain kind. E. g.
Between any two points on a line it is possible to place a third. Now to derive
from this postulate the particular consequence that will lead to the conclu-
sion requires not merely sagacity or Aristotle’s eustokha [ ...] but also imaginative
genius in all its complexity of resources. (Ms. 764, reel 16, 1282-83, late,
seemingly 1910-11)

Here, the requirement of imaginative genius—implicitly compared to the
laborious teasing out of corollarial definition consequences—is highlighted as
required for finding the appropriate particular elements to add. Shin (1997;
2010) also insists upon the importance of selecting the right individuals, among
many possible, to conduct the proof.’®

Other times, it is rather the general or abstract (which is not the same) character
of the added elements which is emphasized: “To the Diagram of the truth of the
Premisses something else has to be added, which is usually a mere May-be, and
then the conclusion appears.’ (letter to James 25. dec 1909, EPII, 502). A May-be,
in Peirce’s late metaphysics, is a possibility which is, of course, general. Especially
when talking about the added elements in this general way, Peirce insists they are
Joreign to the theorem which the proof” intends to establish:

What I call the theorematic reasoning in mathematics consists in so introducing a
foreign idea, using it, and finally deducing a conclusion from which it is elimi-
nated. Every such proof rests, however, upon judgments in which the foreign
idea 1s first introduced, and which are simply self-evident. (Carnegie Application

(.75), 1902, NEM TV, p. 42).9

The question is: are the additional elements particular instantiations select-
ed on the basis of general possibilities granted in the relevant universe of
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discourse (like the subsidiary lines of the angle sum proof granted by Euclid’s
postulates), or does the addition concern a new, general principle or idea?
Judson Webb, in an important paper on Hintikka’s philosophy of logic, also
points to the fact that, in discussing different proofs of Desargues’ theorem,
Peirce involves different types of theorematic reasoning: “There are just two
distinct kinds of things we can introduce into a proof that do not appear in
such a theorem: auxiliary /ines and the idea of /length. The former are only
new objects of the same kind occurring in the theorem, while the latter is a
new concept that is “foreign” to it.” (Webb 2006, 249). Peirce, however, did not
seem to pay explicit attention to this important distinction to which we shall
return later.

He did, however, introduce another distinction between subtypes of
theorematic reasoning. In the famous description of the two kinds of deduc-
tion in the Carnegie application, the description in terms of new elements
gives rise to a subdivision of theorematic reasoning based on the abstract or
non-abstract character of that reasoning:

My first real discovery about mathematical procedure was that there are
two kinds of necessary reasoning, which I call the corollarial and the the-
orematic, because the corollaries affixed to the propositions of Euclid are
usually arguments of one kind, while the more important theorems are
of the other. The peculiarity of theorematic reasoning is that it considers
something not implied at all in the conceptions so far gained, which nei-
ther the definition of the object of research nor anything yet known about
could of themselves suggest, although they give room for it. Euclid, for ex-
ample, will add lines to his diagram which are not at all required or sug-
gested by any previous proposition, and which the conclusion that he reaches
by this means says nothing about. I show that no considerable advance can
be made in thought of any kind without theorematic reasoning. When we
come to consider the heuretic part of mathematical procedure, the question
how such suggestions are obtained will be the central point of the discussion.

Passing over smaller discoveries, the principal result of my closer studies of
it has been the very great part which an operation plays in it which through-
out modern times has been taken for nothing better than a proper butt of
ridicule. It is the operation of abstraction, in the proper sense of the term,
which, for example, converts the proposition “Opium puts people to sleep”

into “Opium has a dormitive virtue”. This turns out to be so essential to the
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greater strides of mathematical demonstration that it is proper to divide all
theorematic reasoning into the non-abstractional and the abstractional. I am
able to prove that the most practically important results of mathematics could
not in any way be attained without this operation of abstraction. It is there-
fore necessary for logic to distinguish sharply between good abstraction and
bad abstraction. (Carnegie Application (1.75), Draft C, 90-102, NEM 1V, p. 49).

This distinction between abstractional and non-abstractional theorematical
reasoning has been taken up by Stephen Levy and Michael Hoffmann (1997;
forthcoming) in their efforts to outline taxonomies of theorematic reasoning.
But is it the case that this idea might, simultaneously, constitute a basis for the
distinction between theorematic reasoning by means of existential instantia-
tion on the one hand and the introduction of new, foreign ideas on the other?
Peirce does not further develop his distinction between abstractional and non-
abstractional theorematic reasoning, so it is difficult to decide. Suffice it to say
that it is not evident these two distinctions are identical or even co-extensive;
the introduction of certain abstract objects may be permitted in the formal-
ism used and in that sense not being new or foreign (just like the introduction
of lines in a geometric proof or a variable in an equation)—the foreign idea
seems to comprise a special class of abstractions only.

3) An interesting feature of the descriptions in terms of added elements
quoted here is that they do not refer to deductions in terms of diagram
experiments. Diagram experiment, however, is taken to constitute the center
of deduction in general, and of theorematic deduction in particular. In a
parallel draft for the Carnegie application, Peirce thus characterizes theore-

matic reasoning as follows:

Theorematic deduction is deduction in which it is necessary to experiment in the
imagination upon the image of the premiss in order from the result of such
experiment to make corollarial deductions to the truth of the conclusion. The

subdivisions of theorematic deduction are of very high theoretical impor-

tance. (Carnegie Application (L75), 1902, NEM IV, p. 38).

The year after, in the masterful Syllabus accompanying his Lowell lectures,
Peirce connects the experimental character of theorematic reasoning to
the ingenuity required as well as to observation; it ‘... is one which, having
represented the conditions of the conclusion in a diagram, performs an
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ingenious experiment upon the digram, and by the observation of the
diagram so modified, ascertains the truth of the conclusion.” (Syllabus, 1903,
CP 2.267, EPII, p. 298). In one of the drafts of the Lowell lectures, Peirce
connects these two descriptions, now taking the addition of new material to
be a subtype of experiment:

I draw a distinction between Corollarial consequences and Theorematic con-
sequences. A corollarial consequence is one the truth of which will become
evident simply upon attentive observation of a diagram constructed so as to
represent the conditions stated in the conclusion. A theorematic consequence
is one which only becomes evident after some experiment has been performed
upon the diagram, such as the addition to it of parts not necessarily referred
to in the statement of the conclusion. (Lowell Lectures, Ms. 456, (p. 49; ISP 28)
transcription by Helmut Pape).

Here, it is not made explicit which other types of experiment there might be
besides the addition of new elements. In an early account for diagram experi-
mentation, however, Peirce provides such an example:

Deduction is that mode of reasoning which examines the state of things asserted
in the premisses, forms a diagram of that state of things, perceives in the parts
of that diagram relations not explicitly mentioned in the premises, satisfies it-
self by mental experiments upon the diagram that these relations would always
subsist, or at least would do so in a certain proportion of cases, and concludes
their necessary, or probable, truth. For example, let the premiss be that there

are four marked points upon a line which has neither extremity nor furcation.

Then, by means of a diagram, O

we may conclude that there are two pairs of points such that in passing along the
line in any way from one to the other point of either pair, one point of the second
pair will be passed an odd number of times and the other point an even (or zero)

number of times. This is deduction. (Untitled manuscript, c¢. 1896, 1.66)’

In this example, the diagram experiment is undertaken by following a
trajectory along the closed curve, until realizing that each full turn will add 2
to the number of passages of each point pair—so with respect to odd/even,
the result will stay the same as the very first half trajectory, passing one point
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1 time, the other point 0 times. This experiment hardly introduces any new
ideas at all, but it does involve instantiation, this time of a trajectory moving
in the diagram. So the new elements added may also be actions performed
on the diagram. In the ‘Minute Logic’ of 1902, Peirce hints at those other
experiment possibilities:

Just now, I wish to point out that after the schema has been constructed
according to the precept virtually contained in the thesis, the assertion of the
theorem is not evidently true, even for the individual schema; nor will any
amount of hard thinking of the philosophers’ corollarial kind ever render
it evident. Thinking in general terms is not enough. It is necessary that
something should be DONE. In geometry, subsidiary lines are drawn. In
algebra permissible transformations are made. Thereupon, the faculty of
observation is called into play. Some relation between the parts of the
schema is remarked. But would this relation subsist in every possible case?
Mere corollarial reasoning will sometimes assure us of this. But, generally
speaking, it may be necessary to draw distinct schemata to represent alterna-
tive possibilities. Theorematic reasoning invariably depends upon experimen-
tation with individual schemata. (‘Minute Logic’, CP 4.233, c. 1902)

Here, the mere introduction of new elements or ideas as additional general
terms is not deemed sufficient the experiment is supposed to perform an
action manipulating the diagram—drawing the auxiliary lines—or, in the
algebraical example, undertaking transformation granted by the relevant
symbol manipulation rules. In the Euclidean example, transformations includ-
ing the movement of geometrical objects on the plane permitted (rotations,
mirrorings, translations, etc.) obviously form a class of experiments different
from those of introducing new elements, just like, in arithmetics, the transfor-
mation possibilities given by calculation rules (and more generally, in algebra,
symbol manipulation rules), provide such experiment possibilities.

An important issue here—both related to the “addition of new elements
or foreign ideas” and to the “experiment” aspects—is the relation between
theorematic reasoning and abduction. A finished piece of theorematic reason-
ing, of course, is deductive the conclusion follows with necessity from the
premisses. But in the course of conducting the experiment, an abductive phase
appears when investigating which experimental procedure, among many, to
follow; which new elements or foreign ideas to introduce. This may require
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repeated, trial-and-error abductive guessing, until the final structure of the
proof is found—maybe after years or centuries. Exactly the fact that neither
premisses nor theorem needs to contain any mentioning of the experiment or
the introduction of new elements makes the abductive character of experimen-
tation clear. Of course, once the right step has been found, abductive searching
may cease and the deductive character of the final proof stands out.

4) A further description of the corollarial/theorematic distinction makes it
correspond to reasoning with words or schemata, respectively. The quote just
given from the ‘Minute Logic’ continues with the conclusion that

We shall find that, in the last analysis, the same thing is true of the corollarial
reasoning, too; even the Aristotelian “demonstration why.” Only in this case,
the very words serve as schemata. Accordingly, we may say that corollarial, or
“philosophical” reasoning is reasoning with words; while theorematic, or math-

ematical reasoning proper, is reasoning with specially constructed schemata.
(‘Minute Logic’, CP 4.233, c. 1902).

This complicated claim identifies corollarial reasoning with philosophical
reasoning in words (implicitly placing a severe limitation on the powers
of such reasoning), as compared to the constructive power of theorematic
reasoning using specially constructed schemata and being able to make
‘demonstration that’. Immediately, however, words are also taken to consti-
tute such schemata, even if maybe simpler and less directly accessible than
‘specially constructed’ schemata. The ubiquity of such schemata also outside
of science (maps, graphs and tables in newspapers, media, commodities, etc.)
points to the fact that the distinction between words and constructed schemata
does not, as it might be immediately asumed, coincide with that of everyday
reasoning and science. Rather, the idea that conceptual reasoning forms a
simple version of schematic reasoning points to the idea of the distinction be-
tween corollarial and theorematic as being a gradient continuum rather than
two mutually exclusive classes—also supported by the fact that theorematic
reasoning examples differ enormously in complexity and the amount of new
elements required. We shall return to this below.

5) A final characterization of theorematic reasoning is that of requir-
ing a new point of view of the problem. We find a simple version of this in
Ms. 773 (Reel 16, MF 1434-35): ‘I spoke of Deduction as the compulsive kind
of reasonings. Almost all the theoric inferences are positively creative. That is,
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they create, not existing things, but entia rationis which are quite as real. This
blackboard is black. Theoric deduction concludes that the board possesses the
quality of blackness and that blackness is a simple object, called an ens rationis
because that theoric thought created it.” Here, the hypostatic abstraction from
‘black’ to ‘blackness’ is taken as an example of theoric deduction.

Here is a terminological problem. In many cases, ‘theoric’ is used inter-
changeably with ‘theorematic’; in other contexts, Peirce seems to intend a
slightly different meaning by the concept ‘theoric’. One of his paradigm
examples is that of Desargues’ theorem (two triangles which are centrally in
perspective are also axially in perspective, usually referred to by Peirce as ‘the
ten point theorem’)>—a 17. century geometry proof recently rediscovered
in Peirce’s time by von Staudt in the context of projective geometry. Here,
Peirce uses the notion of ‘theoric’ to refer to the ‘new point of view’ which
may introduce a third dimension to the diagrammatical representation of the
2-d theorem, thereby making it much more immediately graspable than much

more cumbersome proofs using lenghts of lines:

Fig. 3

The two triangles lying in a central perspective as seen from the point 0 have
the intersections of their sides coinciding on the same line (axial perspective).
This figure (Hilbert and Cohn-Vossen, quoted from Hoffmann, forthcom-
ing p. 18) shows how a three-dimensional interpretation of the originally
2-d planar diagram makes it easy to grasp that the two planes of the trian-
gles meet at the line g. Peirce returns over and over again to this proof, taking
it as a central example of ‘theoric’ or ‘theorematic’ reasoning. An alternative
proof remains restricted to two dimensions but rests upon another theorematic
addition, namely that of the length of lines which is also not mentioned in the
original theorem.

Michael Hoffmann has made a strong case that this adoption of a new
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point of view should be called ‘theoric’, differing from theorematic reasoning
because it simply constitutes a gestalt shift in the conception of the prob-
lem rather than the necessary experimental introduction of new elements in
the deduction process (Hoffmann, forthcoming). Hoffmann’s interpretation is
based on the use of the term ‘theoric’ in Ms. 318 and Ms. 754, both of them
from 1907. From the large Ms. 318 on pragmatism, Hoffmann quotes the fol-
lowing description of ‘theoric’ reasoning which consists ‘... in the transforma-
tion of the problem,—or its statement,—due to viewing it from another point
of view’ (ibid., CGSP 68 = ISP 225). In the brief Ms. 754 (notes for a ‘talk to
the Phil. club’ April 12, 1907), Peirce writes:

I formerly, quite dubiously, divided Deductions into the Corollarial & the
Theorematic. Explain these. Deduction will better be called Demonstration.
But further study leads me to lop off a corollarial part from the Theorematic
Deductions, which follows that part that originates a new point of view. This
part of the theorematic procedure, T will call theoric reasoning. It is very
plainly allied to retroduction, from which it only differs as far as I now see in

being indisputable. (Peirce, quoted in: Hoffmann, forthcoming, p. 27, n13)?

The core of theorematic reasoning, following this quote, is taken to be the
theoric introduction of a new viewpoint—the rest seems to be mere corol-
larial reasoning. I am not convinced, though, that Peirce, by the introduction
of the term ‘theoric’ in 1907 intends a new concept, completely different from
that of ‘theorematic’. In the Ms. 754 quote just given—which forms a hapax,
the only place, to my knowledge, where Peirce uses both of the notions ‘theo-
ric’ and ‘theorematic’—the former is introduced as a central part of the latter.
Shortly afterwards, in the April 1908 issue of 7he Monist, Peirce publishes the
‘Amazing Mazes’ in whose ‘First curiosity’ he defines ‘theoric’ in complete
parallel to the usual definitions of ‘theorematic’ contrasting ‘corollarial’:

I shall term the step of so introducing into a demonstration a new idea not
explicitly or directly contained in the premisses of the reasoning or in the
condition of the proposition which gets proved by the aid of this introduc-
tion, a theoric step. (CP 4.613).

So, I just take ‘theoric’ to be another example of Peirce’s proliferating
neologisms where the same concept gives rise to the coining of many, dif-
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ferent terminological expressions for that concept. Hoffmann, on the other
hand, remains right in pointing to the fact that Peirce’s analysis of the recur-
rent example of Desargues’ theorem does not coincide with his other exam-
ples and descriptions of theorematic reasoning I would say it adds a further
aspect to the description of varieties of theorematic reasoning. Adding a third
dimension to the diagram of Desargues’ theorem is adding a new element in
another way than adding a particular line to an Euclidean diagram, because
it induces a ‘transformation’ in the whole way of viewing the problem. When
returning to Desargues’ theorem the next year, in a letter to William James in
1909 (I.224, NEM 111, p. 471), Peirce now characterizes the Desargues proof
as ‘theorematic’ and the introduction of a third dimension as yet another
example of ‘additions to the diagram.” The ‘theoric’ examples thus rather
point to the fact that the range of possible additions and experiments in
theorematical reasoning is fairly large, involving elements of highly different
dimensionality, generality, and abstractness.

To sum up Peirce’s different descriptions of theorematic reasoning, we can
say they exceed the mere explication from the combination of definitions by
introducing something further, be it new elements (particular or general), be
it experiments by diagram manipulation, be it the substitution of schemata
for words, or be it the gestalt shift of seeing the whole problem from another
point of view.'?

Theorematical reasoning, relative to psychology?
—or to logic systems chosen?

But why could we not see the differences between corollarial reasoning and
the different types of theorematic reasoning as a difference in reasoning psy-
chology only? The former reasonings are generally taken to be easy while
the latter require ingenuity—could we not reduce the difference between
them to a difference between psychological resources needed to solve the
problems? When only we are taught which lines to select in the angle sum
proof or how to introduce the third dimension in Desargues’ proof, these
proofs become just as easy to conduct as corollarial proofs. The corollarial/
theorematical distinction would thus be reduced to one of psychology of
learning, of the peculiarity of human reasoning capabilities to which some
problems appear easy and other appear more difficult? Peirce, always alien
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to psychologism in logic, does not consider this possibility and maintains the
idea that it is the very structure of the problem and the formal resources for
its proof itself which gives rise to the distinction.'" Here, we take Peirce’s
stance in assuming that the difference in problem complexity is no purely
psychological phenomenon.

A related idea rests on the fact that proofs of the same theorem may take
many different forms—cf. the Desargues example—and so a logical parallel
to such psychological ideas will be the following question: After a successful
theorematic proof, could we not simply add the theorematic additions to the
original set of premisses, the original statement of the problem then the
ensuing proof would become corollarial only and easy to perform? From
time to time, Peirce toyed with the idea that proofs once having been theore-
matical might be transformed into the simpler form of corollarial reasoning
by the change of logical system: ‘Perhaps when any branch of mathematics
is worked up into its most perfect form all its theorems will be converted
into corollaries.” (‘Sketch of Dichotomic Mathematics’, c. 1903?, NEM III,
p- 289). That corollarial proofs must be preferred to theorematic proofs
for the same theorems, if available, follows from the obvious ideal that
simpler proofs must be preferred to more complicated proofs of the same
theorem—but this ideal does not grant that all of the latter may, in fact, be
translated into the former. And even if some theorematical proofs may be
translated into corollarial proofs, Peirce generally finds such an idea not
so far from a positive solution to Hilbert’s Entscheidungsproblem—impossible,
as we already saw in the 1902 quote where he deemed it impossible ‘... to
define number in such a way that Fermat’s or Wilson’s theorems should be
simple corollaries from the definition.” (*On Science and Natural Classes’,
1902, EPII, p. 129).

At one occasion, in the ‘Amazing Mazes’, Peirce clearly distinguished
between theorematic reasoning as such and the repetition of an already
established theorematic proof, as well as between proofs necessarily requiring
theorematic tools and theorematic proofs reducible to corollaries. (As in the
‘Amazing Mazes’ in general, Peirce here uses ‘theoric’ for ‘theorematic’). A
theorematic proof which may—if possible—be transformed into a simpler
corollarial proof caused by the introduction of a better formal representation
system, is called a ‘theorem-corollary’—somewhat a misnomer. The repeti-
tion of a theorematic proof, once it has become familiar, ‘a matter of course’,
and thus as easy as corollarial reasoning, he terms ‘theoremation’—this must,
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of course, be distinguished from the former by still possessing the theore-
matic structure. Finally, the theorematic introduction of the new element in
order to establish the proof is, by contrast, named a “major theorem”:

Now to propositions which can only be proved by the aid of theoric steps (or
which, at any rate, could fardly otherwise be proved), I propose to restrict the
application of the hitherto vague word “theorem,” calling all others, which are
deducible from their premisses by the general principles of logic, by the name
of corollaries. A theorem, in this sense, once it is proved, almost invariably
clears the way to the corollarial or easy theorematic proof of other proposi-
tions whose demonstrations had before been beyond the powers of the math-
ematicians. That is the first secondary advantage of a theoric step. The other
such advantage is that when a theoric step has once been invented, it may be
imitated, and its analogues applied in proving other propositions. This consid-
eration suggests the propriety of distinguishing between varieties of theorems,
although the distinctions cannot be sharply drawn. Moreover, a theorem may
pass over into the class of corollaries, in consequence of an improvement in
the system of logic. In that case, its new title may be appended to its old one,
and it may be called a theorem-corollary. There are several such, pointed out by
De Morgan, among the theorems of Euclid, to whom they were theorems and
are reckoned as such, though to a modern exact logician they are only corollar-
ies. If a proposition requires, indeed, for its demonstration, a theoric step, but
only one of a familiar kind, that has become quite a matter of course, it may be
called a theoremation. If the needed theoric step is a novel one, the proposition
which employs it most fully may be termed a major theorem; for even if it does
not, as yet, appear particularly important, it is likely eventually to prove so. If
the theoric invention is susceptible of wide. (Amazing Mazes’, 1908, CP 4.613)

The terminology of these distinctions seems not particularly well-chosen, one
referring to the process (‘theoremation’) two to the result (‘theorem-corollary’,
‘major theorem’), and the syncretistic notion ‘theorem-corollary’ doesn’t seem
to be a good means to indicate that the proposition in question is a corollary
of one set of axioms, but not of another. The overall conceptual argument,
however, clearly establishes the distinction between theorematic reasoning
as such on the one hand, the issue of its dependency upon axiom and rule
systems on other hand—and, finally, the psychological issue of its becoming
familiar with repetition. As Hintikka (1983, 112) argues, the fact that some
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theorematical proofs become corollarial under other rule systems does not at
all obliterate the corollarial-theorematical distinction, rather it makes clear
that the distinction is relative to the logic system used and will remain, albeit
differently, in any such system.

Types of theorematic diagram experiments

As we have seen, Peirce developed the distinction of corollarial and theo-
rematical diagram deductions during the last 15 years of his life, and both
explicitly and implicitly, he proposed different subtypes of theorematical
deductions. He explicitly proposed a distinction between theorematic rea-
soning with or without abstractions, and more implicitly, distinctions may be
inferred from his examples: manipulating with the diagram versus adding new
material; the new elements added being objects, foreign ideas or new points
of view. Apparently, he realized that all this laid out a whole field for further
investigation:

I wish a historical study were made of all the remarkable theoric steps and no-
ticeable classes of theoric steps. I do not mean a mere narrative, but a critical
examination of just what and of what mode the logical efficacy of the differ-
ent steps has been. Then, upon this work as a foundation, should be erected a
logical classification of theoric steps; and this should be crowned with a new

methodeutic of necessary reasoning. (Amazing Mazes’, 1908, CP 4.615)

The ultimate goal for such a research, as so much in Peirce, is heuristic
(‘methodeutic’): it should be undertaken in order to find better methods for
deduction within the confines of the research process as such. The plurality
of theorematic subtypes involved, already more or less vaguely glimpsed,
may be no wonder, given the basic negative definition of somehow trans-
gressing the merely definition-based corollarial reasoning. In how many ways is
it possible to transgress corollarial reasoning? Given Peirce’s overall continuism,
we might surmise that these different subtypes of theorematic reasoning rather
form a continuum from the simplest corollarial examples in the one end to the
most complicated theorematical specimens in the other end. Hintikka proposed
one arithmetic measuring stick for such a gradual scale—the amount of ad-
ditional individuals needed in the proof. But this only goes for one subtype of
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theorematic reasoning, that of the introduction of further quantified particulars.

Among the many species of theorematical reasoning to investigate, we
shall propose three logical levels of theorematical diagram experiment. Let
us go back to the simple Euclidean example with the angle sum proof. Here,
the introduction of auxiliary lines gives a basic example of the introduction
of new particular objects. They are not in any way extraordinary—their very
possibility is granted by basic Euclidean axioms and postulates. The only ex-
traordinary thing about them is, as Shin argues, the selection of the right lines
among the infinity of many possible.

A higher level of diagram experiment addresses the change of selected
details of the very formalism making the former experiment possible. The
famous geometrical example, of course, is the change of the parallel axiom'?
which made possible the angle sum proof. This axiom was originally changed
in order to try to find an ad absurdum proof: if a changed parallel axiom
lead to inconsistencies in geometry, this would prove the parallel axiom was
a theorem of the theory, and the rather cumbersome postulate could change
status and become a theorem of geometry rather than part of the premisses.
Famously, these attempts failed and lead, instead, to new systems of non-
Euclidean geometries by Bolyai, Lobachevsky, Riemann, etc. in the mid-19th
century. The parallel axiom could be changed, now, in two basic directions:
instead of one possible parallel, given a line and a point, no parallel lines
could be drawn through the point, or an infinity of parallel lines could be
drawn—resulting in elliptic and hyperbolic geometries, respectively. But the
very change of the parallel axiom is obviously an experiment with a wholly
different status than the addition of auxiliary lines in the angle sum proof.
Here, the very definition of which objects are taken to be possible in the
formalism is changed—and a theorem such as the angle sum theorem will
consequently be revised in the former case, the angle sum will be more
than 180 degrees, in the latter, less. Generally, experiments varying axioms,
postulates, object definitions, transformation rules etc. of a theory must be
ascribed a status different from the mere introduction of an object allowed by
the existing rule system.

A still higher level, now, may be grasped from the same example. After the
realization that three different types of geometries may result from the change
of the parallel axiom, an experiment on an even higher level was possible: to
vary and synthesize all such geometries and organize them on one continuum
so that Euclidean geometry now forms a point with zero curvature of space
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on a line with different elliptic geometries having different positive curvatures,
hyperbolic geometries having different negative curvatures (Bolyai, Riemann).
By doing so, those pioneers undertook a step characterized by Peirce before
he discovered the corollarial-theorematic distinction:

Mathematical reasoning consists in thinking how things already remarked may
be conceived as making a part of a hitherto unremarked system, especially by
means of the introduction of the hypothesis of continuity where no continu-
ity had hitherto been thought of. (‘Review of Spinoza’s Ethic’ 1894, in: Peirce,
1975-1987, 11, pp. 84-85)

This third step realizes how Euclidean geometry and the infinite number
of elliptic and hyperbolic geometries form part of ‘a hitherto unremarked
system’ given by variation of curvature—exactly by taking them to be
connected by the continuous variation of curvature.

Of course, still higher syntheses are possible in geometry, the generaliza-
tions of the Erlangen program, defining different geometries by which invari-
ances their transformation procedures allow for (thus finding a higher-order
unremarked system of which both (non-)Euclidean geometries, projective
geometry, and topology form a part)—or the generalization by Hilbert, tak-
ing the axiomatic structure of geometries as fixed while the interpretation of
which model of objects they refer to could be subject to variation or the
generalization of category theory allowing for the co-articulation of geometry
with different branches of mathematics, etc.

Such syntheses, however, seem to repeat the two latter types of theore-
matic experiments on higher levels. Thus, the three theorematic levels distin-
guished here—the introduction of a new object, and the two types of intro-
ducing a foreign idea, the experiment with one or more of the basic object
or rule definitions, and the establishment of a system of different versions of
those definitions, seem to to give us a hypothesis of three different types of
theorematic diagram experiment.

The three levels in applied diagrams

Let us argue by example in discussing diagram experiments of these three
kinds in applied diagrams, taking the geographical example of topographical
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maps. Here, the tracing of a route on the map from one location to another
must constitute an example of corollarial reasoning. It does introduce new
elements—the real or imaginary drawing of a line on the map, respecting,
in addition to the mathematical aspects of the diagram, additional features
of physico-geographical ontology: the trajectory should follow roads, not
cross lakes, swamps, buildings, mountains etc. Geography, of course, is no
fully axiomatized science, and the regional ontology of geography makes the
additional geographical diagram constraints more vague than the exact math-
ematical aspects of the same diagram. A practical example of corollarial map
reasoning may be the Danish police detective Jorn ‘Old Man’ Holm’s compu-
ter program, immediately plotting huge amounts of cell phone information
related to suspects on a map:
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Calls from the same cell phone are marked by the same colour. This diagram
representation does not add anything new to previously existing information
—except for the synthesizing a lot of single informations on one map, infor-
mation which otherwise would have to be gathered from long lists of single
pieces of longitude-latitude information of cell phone masts, cell phone
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numbers and call-up times. The synthesis of such information on one and
the same diagram makes it possible to grasp in one glance gestalt information
about cell phone trajectories on the map which would otherwise require com-
plicated, time-demanding and not immediately convincing argumentation
in court. Diagrammatic argumentation, by contrast, proves highly efficient
in court where Holm has been called as an expert witness in many severe
cases about drug smuggling, trafficking etc. Obviously, it becomes harder for a
defendant to stay with his explanation that he spent the whole day in front of
his tv set when a diagram proves that his cell-phone travelled from one end of
the country and back the same day. Such information synthesis on a diagram
constitutes an example of corollarial reasoning—unproblematically adding to
the mathematical diagram aspects of points and lines those of the regional
ontologies of geography and human communication.

Now, we may argue that the introduction of a new object in the diagram,
e. g in the shape of a ruler, marks a first small step in theorematical reason-
ing. It permits us to compare distances across the map and even if having
become an everyday utensil in our time and automatized in GPS and else-
where, the ruler must have been a major breakthrough when the first distance
calculation on a map was actually performed.

Still higher species of diagram experiment with maps may be gathered from
science. A recent such example stems from Jared Diamond’s celebrated book
Guns, Germs, and Steel, tracing the roots of domesticated agriculture on Farth
since the beginning of the neolithic period. A basic argument in the book comes
from Diamond’s diagram experiment with a world map (Diamond 2005, 177):
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Diamond’s basic observation is that among the three major continental com-
plexes, Eurasia, Africa, and the Americas, there is a seminal difference—
the former is roughly oriented East-West, while the latter are both oriented
North-South. This almost trivial diagram experiment receives its non-triviali-
ty (which qualifies it as a piece of theorematic reasoning) from the underlying
combination of biogeography with human culture in the regional ontology of
the diagram. The domestication of plants and animals is a watershed event in
human culture giving rise to the agricultural revolution and the development
of large-scale, layered societies. Domestication presupposes the presence of
easily domesticated species and the stable human settlement over many gen-
erations in the environment favoring the survival of these species. But local
domestications only get the ability to dominate the development of human
civilization if they are able to spread from there to other areas and cultures.
But biogeographically, species are tied to local climate,—and local climate
roughly depends on the latitude, forming isotherms across a temperature
gradient falling from Equator towards the Poles. So the piecing together of
these pieces of geographical ontology into a system depends upon a diagram
experiment: once you have domesticated a species, where may it spread?
Most favourably it spreads in the overall East-West direction, along isotherms,
keeping climate conditions approximately constant—as opposed to traveling
in the North-South direction where climate changes drastically with latitude.
By this piece of a priori diagram reasoning based on the combination of
biogeographical ontology and the ontology of human culture development—
Eurasia stands out as a privileged site for the original domestication of agri-
cultural species (as opposed to Africa which might immediately be taken as a
better candiate, original cradle of the human species as it is). Empirical find-
ings subsequently corroborate this piece of theorematic reasoning: the fertile
crescent of present-day Israel, Palestine, Syria, and Iraq seems to form the
origin of many of the most important domestic species of the whole world,
while the Far East comes in second. These areas were able to communicate
domestications along the East-West axis and export them to Europe and the
Far East. Of course, theorematicity must be a vaguer concept in empirical
examples like this, where the ontologies of biogeography and of culture are
not exhaustively described, but still an argument may be made which runs
as follows. The complex of three basic propositions 1) domestication of a
species is a local event, 2) requiring stable human settlement in the natural
niche of the species 3) and the spread of such species must favor isotherms,
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combined with the diagram experiment of searching the world map where the
most favorable isotherms occur, constitutes a piece of theorematic reasoning.
It introduces a new object on the map—the possible spreading trajectories
of domesticated animal and plant species and thus hypothesizes a general
regularity on the globe. This experiment on the map involves the combination
of concepts from different regional ontologies, of geography, biogeography,
meteorology, cultural history—in some sense, it synthesizes different world
maps charting findings in these different disciplines as a prerequisite of the
experiment. Thus, it provides a new argument for which cultures were able to
survive. But it does not introduce a foreign idea.

A further geographical example may be the more famous diagram experi-
ment by the German geographer and explorer Alfred Wegener leading to the
plate-tectonics of current geology. Famously, Wegener was toying with a map
and noticing that the West coast of Africa strangely fit like a puzzle piece into
the East coast of South America:
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This lead to Wegener’s groundbreaking 1912 idea (‘Die Entstehung der Kon-
tinente’) that these continents had once been one—a controversial argument
initially ridiculed, but much later corroborated by the findings of geological
and biological similarities along the two coasts and finally accepted after the
discovery of the mid-Atlantic mountain range as the decisive indication that
the ocean does in fact ‘grow’ in the middle. This diagram experiment belongs
to a second level as compared to the Jared Diamond example. Here, not only
new objects or connections are introduced—here a completely new idea is
introduced, namely that of continents moving over time. Taken on the level
of pure diagrams, of course, nothing is strange all Wegener did was to take
a geometrical object and make a classical rigid Euclidean movement in order
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to let it face another object. This is permitted by geometry, but, of course,
not by the regional ontology of pre-Wegener geography. So Wegener’s
diagram experiment changed an axiom of geography, as it were—the
assumption of long-term stability of large-scale features of the FEarth
surface—and so introduced not only a new object, but a foreign idea, that of
continents moving on a geological timescale.

An example of a third level diagram experiment in geography might be
taken from the same piece of history of science: the reinterpretation of the
whole of the surface of the Earth in terms of moving continental plates,
inverting their present movements and extrapolating them into the past in
order to trace the origins of the continents. Mountain ranges were now seen
as the results of continent collisions and volcanic areas as the result of chasms
between plates going in each their direction. This permitted the coordinated
diagram experiment reconstructing the original ur-continent of Pangaea.
Wegener already presented the idea of the ur-continent in his 1915 book, it
was baptized Pangaea at at 1928 conference, and was presented like this in the
1929 version of his book Die Entstehung der Kontinente und Ozeane shortly before
his death in 1930 (see Fig. 7).

Here, the particular change of an axiom lead to the systematic reinter-
pretation of a whole conceptual structure of geographical and geological
ontology, effectively integrating the two into one discipline by seeing the same
forces in work all over the surface of the Earth in some ways comparable to
the systematization of geometries after degrees of curvature.

Theorematic reasoning and Hypostatic Abstraction

We may sum up our hypothesis of three basic levels of Theorematic reasoning
as follows:

1) Addition of new individuals to the premises
2) Higher-level experiment with variation of axiom or transformation rule

3) Establishment of system of different axioms or rules

Now, what is the relations of them to Hypostatic Abstraction—the proce-
dure Peirce described as making a second-level substantive out of a first-level
predicate, thereby creating a new object of thought? As we have seen in this



334 Peirce’s Notion of Diagram Experiment

paper, Peirce sometimes distinguishes non-abstract from abstract theoremat-
ic reasonings; while in an early quote he almost identifies abstraction with
theorematic reasoning, Immediately, the talk about individual instantiation
in the first theorematic reasoning type seems to preclude that abstraction
should play any role here. Peirce’s debatable analysis of lines as abstractions
from the trajectories of moving particles would make the subsidiary lines
in the angle sum proof abstract objects added in the proof. In any case, the
importance of this step lies in the selection of the individual lines needed for
the proof which is not a matter of abstraction. Likewise, such lines do not
add an idea which could be said to be foreign to the theorem to be proved.
Maybe the first-level addition of new individuals could comprise both
abstract and non-abstract cases.

Different, however, seems the case of the second level of theorematic
reasoning, implying that something in the rule system is taken as object of
experiment, leading to a “foreign idea’. If the parallel axiom is what defines
the hypostatic abstraction of ‘parallelness’ or ‘being parallel’, then the varia-
tion of that axiom introduces competing definitions of that abhstraction—the
‘foreign ideas’ of that level.

The third level, then, would be that of making a whole system out of
hypostatic abstractions—this system constituting itself, then, a complex
hypostatic abstraction on a higher level, involving such new hypostatic terms
as ‘curvature of space’. This level seems characterized by ‘the introduction of
the hypothesis of continuity where no continuity had hitherto been thought
of’, as Peirce had it—establishing continua of hypostatic abstractions from
the second level.

No doubt, the relation between theorematic reasoning and abstraction
allows for many sophistications which is beyond our scope to investigate here.
This must be left for further reasoning.

Thanks to Michael Hoffmann, Ahti Pietarinen, Sun-Joo Shin, and André de Tienne

Jfor comments and help.
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Notes

1 Taking Comte’s principle (a science is below a another science from which it takes
its principles, and above another science whose principles borrows from it) as basis
for his classifications of the sciences, Peirce places mathematics on top as the
science from which all other sciences borrow principles.

2 These equivalences between alternate angles, of course, are granted by Euclid’s
Proposition 29: If two straight lines are parallel, then a straight line that meets them makes
the alternate angles equal.

3 Shin’s investigation of syntheticity in Kant and Peirce concludes as follows (1997,
37): ‘Even though Peirce himself did not engage in a full evaluation of Kant’s
analytic/synthetic distinction, we can now acquire a quite comprehensive picture
of this matter. Peirce’s theory of mathematics locates the origin of Kant’s synthetic-
ity in two different sources: One is the historical fact that Kant was writing before
the discovery of quantification theory, and the other is Kant’s appreciation of dif-
ferent kinds of reasoning. The former source is responsible for Kant’s claim about
the statement “7 + 5 = 127, but his claim about the statement. “A triangle’s angles
sum to 180 degrees” is related to the latter. The development of logic cleared away
the first source of syntheticity, and we know that this origin of Kant’s syntheticity
is not sustainable any more.” Consequently, the other, more sound aspect of Kant’s
syntheticity relies in his appreciation of two different modes of reasoning, logical
and mathematical,—which were reconstructed by Peirce as corrolarial and theore-
matical reasoning, respectively. See also Stjernfelt 2007, ch. 8.

4 As abstractions come in many levels, and abstract/concrete is not coextensive with
general/particular, the issue whether the subsidiary lines should be taken as
abstractions or particulars or both needs not bother us.

5 The selection of the right elements to add is abductive. In the angle sum case,
the addition of parallel lines is probably prompted by the previous knowledge of
Proposition 29 dealing with the relation between parallel lines and the size of alter-
nate angles—because the theorem to be proved is about angle sizes. So even if the
selection itself is not deductive but merely abductive, the abduction is motivated by
a certain likeness between the theorem and possibilities offered by previous theo-
rems proved.

6 A parallel quote, emphazising the theorematic step as the addition of a new idea,
is the following: ‘I shall term the step of so introducing into a demonstration a new
idea not explicitly or directly contained in the premisses of the reasoning or in the

condition of the proposition which gets proved by the aid of this introduction, a
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theoric step.” (Amazing Mazes’, 1908, CP 4.613)

The shortest presentation is probably: ‘For mathematical reasoning consists in con-
structing a diagram according to a general precept, in observing certain relations
between parts of that diagram not explicitly required by the precept, showing that
these relations will hold for all such diagrams, and in formulating this conclusion
in general terms. All valid necessary reasoning is in fact thus diagrammatic.” (‘Les-
sons from the History of Science’, 1896, CP 1.54) The object of mathematics will
be pure diagrams of any kind, while ordinary reasoning as well as the empiri-
cal sciences will use diagrams applied in being constrained by existing relations—
empirical data and regional ontology— as well.

A detailed attempt at developing the distinction between corollarial and theore-
matical reasoning in “The Logic of History’ (1901, NEM IV) takes the proof of
(x +vy)+z=x+(y+ z) as example of the former and the proof that ‘every mul-
titude is less than a multitude’ (= there is no largest set) as example of the latter.
The overall argument, however, is not very clear. Especially the latter proof which
seems to be a sort of diagonal argument implying a power set construction is not
very clearly presented, and even if Peirce concludes it ‘requires the invention of an
idea not at all forced upon us by the terms of the thesis’, he does not make explicit
what that new idea should be, apart from not being derivable from the definition
of the concept ‘fewer’ (a clearer example of Peirce’s version of Cantor’s power
set theorem can be found a few years earlier in “The Logic of Relatives’ (1897,
CP 3.548). Similarly, at the end of ‘Logic of History’, Peirce has a brief and clear
summary of the Power Set Theorem: ‘I proved that there is no maximum mul-
titude by considering the collection of all possible collections of the numbers of
a collection. Now a collection is an abstraction ...” (1901, NEM 1V, p. 11), but
still there is no indication of what the ‘new idea’ introduced should be. Certainly
not the abstraction of ‘collection’ which is presupposed by the multitudes of the
premisses—rather the power set notion of the set of all possible subsets of a given
set. Peirce seems to have realized the early discussion of corollarial/theorematical
in “The Logic of History’ was less than satisfying; according to the Robin catalogue
on the Ms. (691), Peirce added the following note to the Ms.: “These pages are to
be used in the chapter of the Logic treating Deductive Reasoning. But the theory
needs completion.’

Here, I quote Ms. 754 from Hoffmann (forthcoming) as the ISP page 8 is missing
from the Microfilm edition where it seems to belong between pages 5 and 6.
Maybe the very concept of theorematical reasoning is necessarily open—given the

inexhaustibility of mathematics, it may not be granted we should be able to chart
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all possible subtypes of such reasoning beforehand?

A related issue 1s the degree of conscious access to reasoning processes: ‘If, howev-
er, as the English suppose, the feeling of rationality is the product of a sort of sub-
conscious reasoning—by which I mean an operation which would be a reasoning
if it were fully conscious and deliberate—the accompanying feeling of evidence
may well be due to a dim recollection of the experimentation with diagrams.’
(CP 2.172) The experience of evidence resulting from rational reasoning may, in
some cases, depend upon subconscious reasoning. A recurring argument in Peirce,
however, points to the fact that such reasoning—and, even more, that of com-
puters—Ilacks self-control as the hallmark of real reasoning. As to mechanization
of reasoning, Peirce often discusses the corollarial/theorematical distinction with
reference to computers (‘logic machines’). His overall idea is that the former will
generally be mechanizable, while the latter lie beyond mechanization because their
introduction of new elements by experiment requires creativity and ingenuity.
These ideas might be seen as a vague anticipation of later discoveries of decision
limitations in the philosophy of mathematics and computation (Gédel’s incom-
pleteness theorem, or Turing’s related halting problem), but they are not simply
equivalent. These limitations have another character than Peirce’s distinction,
because they limit the range even of purely mechanical decision procedures which
Peirce would, in all probability, categorize as corollarial.

Strictly speaking, the parallel postulate. It has become common usage to call it an

axiom.
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